Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,84 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
<div align="center">
|
5 |
+
|
6 |
+
<picture>
|
7 |
+
<img src="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_light.svg" width="150px">
|
8 |
+
</picture>
|
9 |
+
|
10 |
+
</div>
|
11 |
+
|
12 |
+
<p align="center">
|
13 |
+
<a href="https://github.com/01-ai">π GitHub</a> β’
|
14 |
+
<a href="https://discord.gg/hYUwWddeAu">πΎ Discord</a> β’
|
15 |
+
<a href="https://twitter.com/01ai_yi">π€ Twitter</a> β’
|
16 |
+
<a href="https://github.com/01-ai/Yi-1.5/issues/2">π¬ WeChat</a>
|
17 |
+
<br/>
|
18 |
+
<a href="https://arxiv.org/abs/2403.04652">π Paper</a> β’
|
19 |
+
<a href="https://01-ai.github.io/">πͺ Tech Blog</a> β’
|
20 |
+
<a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#faq">π FAQ</a> β’
|
21 |
+
<a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#learning-hub">π Learning Hub</a>
|
22 |
+
</p>
|
23 |
+
|
24 |
+
# Intro
|
25 |
+
|
26 |
+
Yi-Coder series models are trained for coding tasks with two sizes available, 1.5B and 9B, supporting 52 major coding languages. Notably, the Yi-Coder-9B outperforms other models under 10 billion parameters such as CodeQwen1.5 7B and CodeGeex4 9B, and even achieves performance on par with DeepSeek-Coder 33B.
|
27 |
+
|
28 |
+
Yi-Coder excels in long-context understanding, handling up to 128K tokens for project-level code comprehension and generation. Despite its relatively small size, Yi-coder is versatile in tasks like programming, code editing, debugging, completion, and mathematical reasoning.
|
29 |
+
|
30 |
+
For model details and benchmarks, see [Yi-Coder blog](https://01-ai.github.io/) and [Yi-Coder README](https://github.com/01-ai/Yi-Coder).
|
31 |
+
|
32 |
+
<p align="left">
|
33 |
+
<img src="https://github.com/01-ai/Yi/blob/main/assets/img/coder/demo1.gif?raw=true" alt="demo1" width="500"/>
|
34 |
+
</p>
|
35 |
+
|
36 |
+
# Models
|
37 |
+
|
38 |
+
# Benchmarks
|
39 |
+
|
40 |
+
Yi-Coder-9B-Chat achieved an impressive 23% pass rate in LiveCodeBench, making it the only model with under 10B parameters to surpass 20%. It also outperforms DeepSeekCoder-33B-Ins at 22.3%, CodeGeex4-9B-all at 17.8%, CodeLLama-34B-Ins at 13.3%, and CodeQwen1.5-7B-Chat at 12%.
|
41 |
+
|
42 |
+
<p align="left">
|
43 |
+
<img src="https://github.com/01-ai/Yi/blob/main/assets/img/coder/b1.jpg?raw=true" alt="b1" width="500"/>
|
44 |
+
</p>
|
45 |
+
|
46 |
+
# Quick Start
|
47 |
+
|
48 |
+
You can use transformers to run inference with Yi-Coder models (both chat and base versions) as follows:
|
49 |
+
```python
|
50 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
51 |
+
|
52 |
+
device = "cuda" # the device to load the model onto
|
53 |
+
model_path = "01-ai/Yi-Coder-9B-Chat"
|
54 |
+
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
56 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto").eval()
|
57 |
+
|
58 |
+
prompt = "Write a quick sort algorithm."
|
59 |
+
messages = [
|
60 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
61 |
+
{"role": "user", "content": prompt}
|
62 |
+
]
|
63 |
+
text = tokenizer.apply_chat_template(
|
64 |
+
messages,
|
65 |
+
tokenize=False,
|
66 |
+
add_generation_prompt=True
|
67 |
+
)
|
68 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
69 |
+
|
70 |
+
generated_ids = model.generate(
|
71 |
+
model_inputs.input_ids,
|
72 |
+
max_new_tokens=1024,
|
73 |
+
eos_token_id=tokenizer.eos_token_id
|
74 |
+
)
|
75 |
+
generated_ids = [
|
76 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
77 |
+
]
|
78 |
+
|
79 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
80 |
+
print(response)
|
81 |
+
```
|
82 |
+
|
83 |
+
For getting up and running with Yi-Coder series models quickly, see [Yi-Coder README](https://github.com/01-ai/Yi-Coder).
|
84 |
+
|