--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - precision - recall model-index: - name: deberta-pii-finetuned results: [] --- # deberta-pii-finetuned This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0065 - F Beta: 0.9611 - Precision: 0.9932 - Recall: 0.9598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F Beta | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:| | 0.0291 | 0.46 | 300 | 0.0104 | 0.9756 | 0.9854 | 0.9752 | | 0.0062 | 0.93 | 600 | 0.0041 | 0.9830 | 0.9901 | 0.9827 | | 0.0044 | 1.39 | 900 | 0.0057 | 0.9713 | 0.9895 | 0.9706 | | 0.0258 | 1.85 | 1200 | 0.0040 | 0.9799 | 0.9920 | 0.9794 | | 0.0135 | 2.32 | 1500 | 0.0050 | 0.9845 | 0.9943 | 0.9841 | | 0.0023 | 2.78 | 1800 | 0.0065 | 0.9611 | 0.9932 | 0.9598 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0