|
import os |
|
import json |
|
import argparse |
|
import torch |
|
import random |
|
import glog |
|
|
|
from lm_eval import evaluator |
|
from eval_utils import LMEvalAdaptor |
|
from .tokenization_bitnet import BitnetTokenizer |
|
from .modeling_bitnet import BitnetForCausalLM |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--seed', default=0, type=int) |
|
parser.add_argument('--hf_path', default='1bitLLM/bitnet_b1_58-3B', type=str) |
|
parser.add_argument('--batch_size', type=int, default=1, help='batch size') |
|
parser.add_argument("--tasks", type=str) |
|
parser.add_argument("--output_path", default=None, type=str) |
|
parser.add_argument('--num_fewshot', type=int, default=0) |
|
parser.add_argument('--ctx_size', default=2048, type=int) |
|
|
|
|
|
def main(args): |
|
model_str = args.hf_path |
|
model = BitnetForCausalLM.from_pretrained( |
|
args.hf_path, |
|
device_map='auto', |
|
low_cpu_mem_usage=True, |
|
use_flash_attention_2=True, |
|
torch_dtype=torch.float16, |
|
).half() |
|
|
|
tokenizer = BitnetTokenizer.from_pretrained(args.hf_path, use_fast=False) |
|
glog.info('loaded model!') |
|
|
|
task_names = args.tasks.split(",") |
|
|
|
lm_eval_model = LMEvalAdaptor(model_str, model, tokenizer, args.batch_size, args.ctx_size) |
|
results = evaluator.simple_evaluate( |
|
model=lm_eval_model, |
|
tasks=task_names, |
|
batch_size=args.batch_size, |
|
no_cache=True, |
|
num_fewshot=args.num_fewshot, |
|
) |
|
|
|
print(evaluator.make_table(results)) |
|
|
|
if args.output_path is not None: |
|
os.makedirs(os.path.dirname(args.output_path), exist_ok=True) |
|
|
|
results["config"]["model"] = args.hf_path |
|
with open(args.output_path, "w") as f: |
|
json.dump(results, f, indent=2) |
|
|
|
|
|
if __name__ == '__main__': |
|
torch.set_grad_enabled(False) |
|
args = parser.parse_args() |
|
random.seed(args.seed) |
|
torch.random.manual_seed(args.seed) |
|
main(args) |
|
|