import os import warnings from functools import partial from typing import Literal, Tuple import numpy as np import torch import torch.nn.functional as F from diff_gaussian_rasterization import ( GaussianRasterizationSettings, GaussianRasterizer, ) from diffusers import ConfigMixin, ModelMixin from torch import Tensor, nn def look_at(campos): forward_vector = -campos / np.linalg.norm(campos, axis=-1) up_vector = np.array([0, 1, 0], dtype=np.float32) right_vector = np.cross(up_vector, forward_vector) up_vector = np.cross(forward_vector, right_vector) R = np.stack([right_vector, up_vector, forward_vector], axis=-1) return R def orbit_camera(elevation, azimuth, radius=1): elevation = np.deg2rad(elevation) azimuth = np.deg2rad(azimuth) x = radius * np.cos(elevation) * np.sin(azimuth) y = -radius * np.sin(elevation) z = radius * np.cos(elevation) * np.cos(azimuth) campos = np.array([x, y, z]) T = np.eye(4, dtype=np.float32) T[:3, :3] = look_at(campos) T[:3, 3] = campos return T def get_rays(pose, h, w, fovy, opengl=True): x, y = torch.meshgrid( torch.arange(w, device=pose.device), torch.arange(h, device=pose.device), indexing="xy", ) x = x.flatten() y = y.flatten() cx = w * 0.5 cy = h * 0.5 focal = h * 0.5 / np.tan(0.5 * np.deg2rad(fovy)) camera_dirs = F.pad( torch.stack( [ (x - cx + 0.5) / focal, (y - cy + 0.5) / focal * (-1.0 if opengl else 1.0), ], dim=-1, ), (0, 1), value=(-1.0 if opengl else 1.0), ) rays_d = camera_dirs @ pose[:3, :3].transpose(0, 1) rays_o = pose[:3, 3].unsqueeze(0).expand_as(rays_d) rays_o = rays_o.view(h, w, 3) rays_d = F.normalize(rays_d, dim=-1).view(h, w, 3) return rays_o, rays_d class GaussianRenderer: def __init__(self, fovy, output_size): self.output_size = output_size self.bg_color = torch.tensor([1, 1, 1], dtype=torch.float32, device="cuda") zfar = 2.5 znear = 0.1 self.tan_half_fov = np.tan(0.5 * np.deg2rad(fovy)) self.proj_matrix = torch.zeros(4, 4, dtype=torch.float32) self.proj_matrix[0, 0] = 1 / self.tan_half_fov self.proj_matrix[1, 1] = 1 / self.tan_half_fov self.proj_matrix[2, 2] = (zfar + znear) / (zfar - znear) self.proj_matrix[3, 2] = -(zfar * znear) / (zfar - znear) self.proj_matrix[2, 3] = 1 def render( self, gaussians, cam_view, cam_view_proj, cam_pos, bg_color=None, scale_modifier=1, ): device = gaussians.device B, V = cam_view.shape[:2] images = [] alphas = [] for b in range(B): means3D = gaussians[b, :, 0:3].contiguous().float() opacity = gaussians[b, :, 3:4].contiguous().float() scales = gaussians[b, :, 4:7].contiguous().float() rotations = gaussians[b, :, 7:11].contiguous().float() rgbs = gaussians[b, :, 11:].contiguous().float() for v in range(V): view_matrix = cam_view[b, v].float() view_proj_matrix = cam_view_proj[b, v].float() campos = cam_pos[b, v].float() raster_settings = GaussianRasterizationSettings( image_height=self.output_size, image_width=self.output_size, tanfovx=self.tan_half_fov, tanfovy=self.tan_half_fov, bg=self.bg_color if bg_color is None else bg_color, scale_modifier=scale_modifier, viewmatrix=view_matrix, projmatrix=view_proj_matrix, sh_degree=0, campos=campos, prefiltered=False, debug=False, ) rasterizer = GaussianRasterizer(raster_settings=raster_settings) rendered_image, _, _, rendered_alpha = rasterizer( means3D=means3D, means2D=torch.zeros_like( means3D, dtype=torch.float32, device=device ), shs=None, colors_precomp=rgbs, opacities=opacity, scales=scales, rotations=rotations, cov3D_precomp=None, ) rendered_image = rendered_image.clamp(0, 1) images.append(rendered_image) alphas.append(rendered_alpha) images = torch.stack(images, dim=0).view( B, V, 3, self.output_size, self.output_size ) alphas = torch.stack(alphas, dim=0).view( B, V, 1, self.output_size, self.output_size ) return {"image": images, "alpha": alphas} def save_ply(self, gaussians, path): assert gaussians.shape[0] == 1, "only support batch size 1" from plyfile import PlyData, PlyElement means3D = gaussians[0, :, 0:3].contiguous().float() opacity = gaussians[0, :, 3:4].contiguous().float() scales = gaussians[0, :, 4:7].contiguous().float() rotations = gaussians[0, :, 7:11].contiguous().float() shs = gaussians[0, :, 11:].unsqueeze(1).contiguous().float() mask = opacity.squeeze(-1) >= 0.005 means3D = means3D[mask] opacity = opacity[mask] scales = scales[mask] rotations = rotations[mask] shs = shs[mask] opacity = opacity.clamp(1e-6, 1 - 1e-6) opacity = torch.log(opacity / (1 - opacity)) scales = torch.log(scales + 1e-8) shs = (shs - 0.5) / 0.28209479177387814 xyzs = means3D.detach().cpu().numpy() f_dc = ( shs.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy() ) opacities = opacity.detach().cpu().numpy() scales = scales.detach().cpu().numpy() rotations = rotations.detach().cpu().numpy() h = ["x", "y", "z"] for i in range(f_dc.shape[1]): h.append("f_dc_{}".format(i)) h.append("opacity") for i in range(scales.shape[1]): h.append("scale_{}".format(i)) for i in range(rotations.shape[1]): h.append("rot_{}".format(i)) dtype_full = [(attribute, "f4") for attribute in h] elements = np.empty(xyzs.shape[0], dtype=dtype_full) attributes = np.concatenate((xyzs, f_dc, opacities, scales, rotations), axis=1) elements[:] = list(map(tuple, attributes)) el = PlyElement.describe(elements, "vertex") PlyData([el]).write(path) class LGM(ModelMixin, ConfigMixin): def __init__(self): super().__init__() self.input_size = 256 self.splat_size = 128 self.output_size = 512 self.radius = 1.5 self.fovy = 49.1 self.unet = UNet( 9, 14, down_channels=(64, 128, 256, 512, 1024, 1024), down_attention=(False, False, False, True, True, True), mid_attention=True, up_channels=(1024, 1024, 512, 256, 128), up_attention=(True, True, True, False, False), ) self.conv = nn.Conv2d(14, 14, kernel_size=1) self.gs = GaussianRenderer(self.fovy, self.output_size) self.pos_act = lambda x: x.clamp(-1, 1) self.scale_act = lambda x: 0.1 * F.softplus(x) self.opacity_act = lambda x: torch.sigmoid(x) self.rot_act = F.normalize self.rgb_act = lambda x: 0.5 * torch.tanh(x) + 0.5 def prepare_default_rays(self, device, elevation=0): cam_poses = np.stack( [ orbit_camera(elevation, 0, radius=self.radius), orbit_camera(elevation, 90, radius=self.radius), orbit_camera(elevation, 180, radius=self.radius), orbit_camera(elevation, 270, radius=self.radius), ], axis=0, ) cam_poses = torch.from_numpy(cam_poses) rays_embeddings = [] for i in range(cam_poses.shape[0]): rays_o, rays_d = get_rays( cam_poses[i], self.input_size, self.input_size, self.fovy ) rays_plucker = torch.cat( [torch.cross(rays_o, rays_d, dim=-1), rays_d], dim=-1 ) rays_embeddings.append(rays_plucker) rays_embeddings = ( torch.stack(rays_embeddings, dim=0) .permute(0, 3, 1, 2) .contiguous() .to(device) ) return rays_embeddings def forward(self, images): B, V, C, H, W = images.shape images = images.view(B * V, C, H, W) x = self.unet(images) x = self.conv(x) x = x.reshape(B, 4, 14, self.splat_size, self.splat_size) x = x.permute(0, 1, 3, 4, 2).reshape(B, -1, 14) pos = self.pos_act(x[..., 0:3]) opacity = self.opacity_act(x[..., 3:4]) scale = self.scale_act(x[..., 4:7]) rotation = self.rot_act(x[..., 7:11]) rgbs = self.rgb_act(x[..., 11:]) q = torch.tensor([0, 0, 1, 0], dtype=pos.dtype, device=pos.device) R = torch.tensor( [ [-1, 0, 0], [0, -1, 0], [0, 0, 1], ], dtype=pos.dtype, device=pos.device, ) pos = torch.matmul(pos, R.T) def multiply_quat(q1, q2): w1, x1, y1, z1 = q1.unbind(-1) w2, x2, y2, z2 = q2.unbind(-1) w = w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2 x = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2 y = w1 * y2 + y1 * w2 + z1 * x2 - x1 * z2 z = w1 * z2 + z1 * w2 + x1 * y2 - y1 * x2 return torch.stack([w, x, y, z], dim=-1) for i in range(B): rotation[i, :] = multiply_quat(q, rotation[i, :]) gaussians = torch.cat([pos, opacity, scale, rotation, rgbs], dim=-1) return gaussians # ============================================================================= # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. # References: # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py # https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py # ============================================================================= XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None try: if XFORMERS_ENABLED: from xformers.ops import memory_efficient_attention, unbind XFORMERS_AVAILABLE = True warnings.warn("xFormers is available (Attention)") else: warnings.warn("xFormers is disabled (Attention)") raise ImportError except ImportError: XFORMERS_AVAILABLE = False warnings.warn("xFormers is not available (Attention)") class Attention(nn.Module): def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = False, proj_bias: bool = True, attn_drop: float = 0.0, proj_drop: float = 0.0, ) -> None: super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim, bias=proj_bias) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x: Tensor) -> Tensor: B, N, C = x.shape qkv = ( self.qkv(x) .reshape(B, N, 3, self.num_heads, C // self.num_heads) .permute(2, 0, 3, 1, 4) ) q, k, v = qkv[0] * self.scale, qkv[1], qkv[2] attn = q @ k.transpose(-2, -1) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class MemEffAttention(Attention): def forward(self, x: Tensor, attn_bias=None) -> Tensor: if not XFORMERS_AVAILABLE: if attn_bias is not None: raise AssertionError("xFormers is required for using nested tensors") return super().forward(x) B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) q, k, v = unbind(qkv, 2) x = memory_efficient_attention(q, k, v, attn_bias=attn_bias) x = x.reshape([B, N, C]) x = self.proj(x) x = self.proj_drop(x) return x class CrossAttention(nn.Module): def __init__( self, dim: int, dim_q: int, dim_k: int, dim_v: int, num_heads: int = 8, qkv_bias: bool = False, proj_bias: bool = True, attn_drop: float = 0.0, proj_drop: float = 0.0, ) -> None: super().__init__() self.dim = dim self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim**-0.5 self.to_q = nn.Linear(dim_q, dim, bias=qkv_bias) self.to_k = nn.Linear(dim_k, dim, bias=qkv_bias) self.to_v = nn.Linear(dim_v, dim, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim, bias=proj_bias) self.proj_drop = nn.Dropout(proj_drop) def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor: B, N, _ = q.shape M = k.shape[1] q = self.scale * self.to_q(q).reshape( B, N, self.num_heads, self.dim // self.num_heads ).permute(0, 2, 1, 3) k = ( self.to_k(k) .reshape(B, M, self.num_heads, self.dim // self.num_heads) .permute(0, 2, 1, 3) ) v = ( self.to_v(v) .reshape(B, M, self.num_heads, self.dim // self.num_heads) .permute(0, 2, 1, 3) ) attn = q @ k.transpose(-2, -1) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class MemEffCrossAttention(CrossAttention): def forward(self, q: Tensor, k: Tensor, v: Tensor, attn_bias=None) -> Tensor: if not XFORMERS_AVAILABLE: if attn_bias is not None: raise AssertionError("xFormers is required for using nested tensors") return super().forward(q, k, v) B, N, _ = q.shape M = k.shape[1] q = self.scale * self.to_q(q).reshape( B, N, self.num_heads, self.dim // self.num_heads ) k = self.to_k(k).reshape(B, M, self.num_heads, self.dim // self.num_heads) v = self.to_v(v).reshape(B, M, self.num_heads, self.dim // self.num_heads) x = memory_efficient_attention(q, k, v, attn_bias=attn_bias) x = x.reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x # ============================================================================= # End of xFormers class MVAttention(nn.Module): def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = False, proj_bias: bool = True, attn_drop: float = 0.0, proj_drop: float = 0.0, groups: int = 32, eps: float = 1e-5, residual: bool = True, skip_scale: float = 1, num_frames: int = 4, ): super().__init__() self.residual = residual self.skip_scale = skip_scale self.num_frames = num_frames self.norm = nn.GroupNorm( num_groups=groups, num_channels=dim, eps=eps, affine=True ) self.attn = MemEffAttention( dim, num_heads, qkv_bias, proj_bias, attn_drop, proj_drop ) def forward(self, x): BV, C, H, W = x.shape B = BV // self.num_frames res = x x = self.norm(x) x = ( x.reshape(B, self.num_frames, C, H, W) .permute(0, 1, 3, 4, 2) .reshape(B, -1, C) ) x = self.attn(x) x = ( x.reshape(B, self.num_frames, H, W, C) .permute(0, 1, 4, 2, 3) .reshape(BV, C, H, W) ) if self.residual: x = (x + res) * self.skip_scale return x class ResnetBlock(nn.Module): def __init__( self, in_channels: int, out_channels: int, resample: Literal["default", "up", "down"] = "default", groups: int = 32, eps: float = 1e-5, skip_scale: float = 1, ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.skip_scale = skip_scale self.norm1 = nn.GroupNorm( num_groups=groups, num_channels=in_channels, eps=eps, affine=True ) self.conv1 = nn.Conv2d( in_channels, out_channels, kernel_size=3, stride=1, padding=1 ) self.norm2 = nn.GroupNorm( num_groups=groups, num_channels=out_channels, eps=eps, affine=True ) self.conv2 = nn.Conv2d( out_channels, out_channels, kernel_size=3, stride=1, padding=1 ) self.act = F.silu self.resample = None if resample == "up": self.resample = partial(F.interpolate, scale_factor=2.0, mode="nearest") elif resample == "down": self.resample = nn.AvgPool2d(kernel_size=2, stride=2) self.shortcut = nn.Identity() if self.in_channels != self.out_channels: self.shortcut = nn.Conv2d( in_channels, out_channels, kernel_size=1, bias=True ) def forward(self, x): res = x x = self.norm1(x) x = self.act(x) if self.resample: res = self.resample(res) x = self.resample(x) x = self.conv1(x) x = self.norm2(x) x = self.act(x) x = self.conv2(x) x = (x + self.shortcut(res)) * self.skip_scale return x class DownBlock(nn.Module): def __init__( self, in_channels: int, out_channels: int, num_layers: int = 1, downsample: bool = True, attention: bool = True, attention_heads: int = 16, skip_scale: float = 1, ): super().__init__() nets = [] attns = [] for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels nets.append(ResnetBlock(in_channels, out_channels, skip_scale=skip_scale)) if attention: attns.append( MVAttention(out_channels, attention_heads, skip_scale=skip_scale) ) else: attns.append(None) self.nets = nn.ModuleList(nets) self.attns = nn.ModuleList(attns) self.downsample = None if downsample: self.downsample = nn.Conv2d( out_channels, out_channels, kernel_size=3, stride=2, padding=1 ) def forward(self, x): xs = [] for attn, net in zip(self.attns, self.nets): x = net(x) if attn: x = attn(x) xs.append(x) if self.downsample: x = self.downsample(x) xs.append(x) return x, xs class MidBlock(nn.Module): def __init__( self, in_channels: int, num_layers: int = 1, attention: bool = True, attention_heads: int = 16, skip_scale: float = 1, ): super().__init__() nets = [] attns = [] nets.append(ResnetBlock(in_channels, in_channels, skip_scale=skip_scale)) for _ in range(num_layers): nets.append(ResnetBlock(in_channels, in_channels, skip_scale=skip_scale)) if attention: attns.append( MVAttention(in_channels, attention_heads, skip_scale=skip_scale) ) else: attns.append(None) self.nets = nn.ModuleList(nets) self.attns = nn.ModuleList(attns) def forward(self, x): x = self.nets[0](x) for attn, net in zip(self.attns, self.nets[1:]): if attn: x = attn(x) x = net(x) return x class UpBlock(nn.Module): def __init__( self, in_channels: int, prev_out_channels: int, out_channels: int, num_layers: int = 1, upsample: bool = True, attention: bool = True, attention_heads: int = 16, skip_scale: float = 1, ): super().__init__() nets = [] attns = [] for i in range(num_layers): cin = in_channels if i == 0 else out_channels cskip = prev_out_channels if (i == num_layers - 1) else out_channels nets.append(ResnetBlock(cin + cskip, out_channels, skip_scale=skip_scale)) if attention: attns.append( MVAttention(out_channels, attention_heads, skip_scale=skip_scale) ) else: attns.append(None) self.nets = nn.ModuleList(nets) self.attns = nn.ModuleList(attns) self.upsample = None if upsample: self.upsample = nn.Conv2d( out_channels, out_channels, kernel_size=3, stride=1, padding=1 ) def forward(self, x, xs): for attn, net in zip(self.attns, self.nets): res_x = xs[-1] xs = xs[:-1] x = torch.cat([x, res_x], dim=1) x = net(x) if attn: x = attn(x) if self.upsample: x = F.interpolate(x, scale_factor=2.0, mode="nearest") x = self.upsample(x) return x class UNet(nn.Module): def __init__( self, in_channels: int = 9, out_channels: int = 14, down_channels: Tuple[int, ...] = (64, 128, 256, 512, 1024, 1024), down_attention: Tuple[bool, ...] = (False, False, False, True, True, True), mid_attention: bool = True, up_channels: Tuple[int, ...] = (1024, 1024, 512, 256, 128), up_attention: Tuple[bool, ...] = (True, True, True, False, False), layers_per_block: int = 2, skip_scale: float = np.sqrt(0.5), ): super().__init__() self.conv_in = nn.Conv2d( in_channels, down_channels[0], kernel_size=3, stride=1, padding=1 ) down_blocks = [] cout = down_channels[0] for i in range(len(down_channels)): cin = cout cout = down_channels[i] down_blocks.append( DownBlock( cin, cout, num_layers=layers_per_block, downsample=(i != len(down_channels) - 1), attention=down_attention[i], skip_scale=skip_scale, ) ) self.down_blocks = nn.ModuleList(down_blocks) self.mid_block = MidBlock( down_channels[-1], attention=mid_attention, skip_scale=skip_scale ) up_blocks = [] cout = up_channels[0] for i in range(len(up_channels)): cin = cout cout = up_channels[i] cskip = down_channels[max(-2 - i, -len(down_channels))] up_blocks.append( UpBlock( cin, cskip, cout, num_layers=layers_per_block + 1, upsample=(i != len(up_channels) - 1), attention=up_attention[i], skip_scale=skip_scale, ) ) self.up_blocks = nn.ModuleList(up_blocks) self.norm_out = nn.GroupNorm( num_channels=up_channels[-1], num_groups=32, eps=1e-5 ) self.conv_out = nn.Conv2d( up_channels[-1], out_channels, kernel_size=3, stride=1, padding=1 ) def forward(self, x): x = self.conv_in(x) xss = [x] for block in self.down_blocks: x, xs = block(x) xss.extend(xs) x = self.mid_block(x) for block in self.up_blocks: xs = xss[-len(block.nets) :] xss = xss[: -len(block.nets)] x = block(x, xs) x = self.norm_out(x) x = F.silu(x) x = self.conv_out(x) return x