File size: 7,749 Bytes
a8a63dd f0e1e27 a8a63dd 3a2ea0a a8a63dd 3a2ea0a a8a63dd 8747d5d a8a63dd 8747d5d a8a63dd 8747d5d a8a63dd 3a2ea0a a8a63dd 3a2ea0a a8a63dd 3a2ea0a a8a63dd 8747d5d a8a63dd 3a2ea0a a8a63dd 3a2ea0a a8a63dd 8747d5d a8a63dd 8747d5d a8a63dd 3a2ea0a 8747d5d a8a63dd 3a2ea0a 8747d5d 3a2ea0a 8747d5d 3a2ea0a 8747d5d a8a63dd 3a2ea0a 8747d5d 3a2ea0a 8747d5d 3a2ea0a a8a63dd 3a2ea0a 8747d5d 3a2ea0a a8a63dd 8747d5d a8a63dd 3a2ea0a a8a63dd 8747d5d 3a2ea0a 8747d5d 3a2ea0a 8747d5d a8a63dd 3a2ea0a a8a63dd 3a2ea0a a8a63dd 3a2ea0a a8a63dd f0e1e27 3a2ea0a a8a63dd 8747d5d 3a2ea0a 8747d5d 3a2ea0a 8747d5d 3a2ea0a a8a63dd 8747d5d 3a2ea0a a8a63dd 3a2ea0a 8747d5d 3a2ea0a a8a63dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from inspect import isfunction
from einops import rearrange, repeat
from typing import Optional, Any
# require xformers
import xformers # type: ignore
import xformers.ops # type: ignore
from .util import checkpoint, zero_module
def default(val, d):
if val is not None:
return val
return d() if isfunction(d) else d
class GEGLU(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
return x * F.gelu(gate)
class FeedForward(nn.Module):
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
project_in = (
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
if not glu
else GEGLU(dim, inner_dim)
)
self.net = nn.Sequential(
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
)
def forward(self, x):
return self.net(x)
class MemoryEfficientCrossAttention(nn.Module):
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
def __init__(
self,
query_dim,
context_dim=None,
heads=8,
dim_head=64,
dropout=0.0,
ip_dim=0,
ip_weight=1,
):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.heads = heads
self.dim_head = dim_head
self.ip_dim = ip_dim
self.ip_weight = ip_weight
if self.ip_dim > 0:
self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False)
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
)
self.attention_op: Optional[Any] = None
def forward(self, x, context=None):
q = self.to_q(x)
context = default(context, x)
if self.ip_dim > 0:
# context dim [(b frame_num), (77 + img_token), 1024]
token_len = context.shape[1]
context_ip = context[:, -self.ip_dim :, :]
k_ip = self.to_k_ip(context_ip)
v_ip = self.to_v_ip(context_ip)
context = context[:, : (token_len - self.ip_dim), :]
k = self.to_k(context)
v = self.to_v(context)
b, _, _ = q.shape
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], self.heads, self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b * self.heads, t.shape[1], self.dim_head)
.contiguous(),
(q, k, v),
)
# actually compute the attention, what we cannot get enough of
out = xformers.ops.memory_efficient_attention(
q, k, v, attn_bias=None, op=self.attention_op
)
if self.ip_dim > 0:
k_ip, v_ip = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], self.heads, self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b * self.heads, t.shape[1], self.dim_head)
.contiguous(),
(k_ip, v_ip),
)
# actually compute the attention, what we cannot get enough of
out_ip = xformers.ops.memory_efficient_attention(
q, k_ip, v_ip, attn_bias=None, op=self.attention_op
)
out = out + self.ip_weight * out_ip
out = (
out.unsqueeze(0)
.reshape(b, self.heads, out.shape[1], self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b, out.shape[1], self.heads * self.dim_head)
)
return self.to_out(out)
class BasicTransformerBlock3D(nn.Module):
def __init__(
self,
dim,
n_heads,
d_head,
context_dim,
dropout=0.0,
gated_ff=True,
checkpoint=True,
ip_dim=0,
ip_weight=1,
):
super().__init__()
self.attn1 = MemoryEfficientCrossAttention(
query_dim=dim,
context_dim=None, # self-attention
heads=n_heads,
dim_head=d_head,
dropout=dropout,
)
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
self.attn2 = MemoryEfficientCrossAttention(
query_dim=dim,
context_dim=context_dim,
heads=n_heads,
dim_head=d_head,
dropout=dropout,
# ip only applies to cross-attention
ip_dim=ip_dim,
ip_weight=ip_weight,
)
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.norm3 = nn.LayerNorm(dim)
self.checkpoint = checkpoint
def forward(self, x, context=None, num_frames=1):
return checkpoint(
self._forward, (x, context, num_frames), self.parameters(), self.checkpoint
)
def _forward(self, x, context=None, num_frames=1):
x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous()
x = self.attn1(self.norm1(x), context=None) + x
x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous()
x = self.attn2(self.norm2(x), context=context) + x
x = self.ff(self.norm3(x)) + x
return x
class SpatialTransformer3D(nn.Module):
def __init__(
self,
in_channels,
n_heads,
d_head,
context_dim, # cross attention input dim
depth=1,
dropout=0.0,
ip_dim=0,
ip_weight=1,
use_checkpoint=True,
):
super().__init__()
if not isinstance(context_dim, list):
context_dim = [context_dim]
self.in_channels = in_channels
inner_dim = n_heads * d_head
self.norm = nn.GroupNorm(
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
)
self.proj_in = nn.Linear(in_channels, inner_dim)
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock3D(
inner_dim,
n_heads,
d_head,
context_dim=context_dim[d],
dropout=dropout,
checkpoint=use_checkpoint,
ip_dim=ip_dim,
ip_weight=ip_weight,
)
for d in range(depth)
]
)
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
def forward(self, x, context=None, num_frames=1):
# note: if no context is given, cross-attention defaults to self-attention
if not isinstance(context, list):
context = [context]
b, c, h, w = x.shape
x_in = x
x = self.norm(x)
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
x = self.proj_in(x)
for i, block in enumerate(self.transformer_blocks):
x = block(x, context=context[i], num_frames=num_frames)
x = self.proj_out(x)
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
return x + x_in
|