|
|
|
|
|
import math |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from inspect import isfunction |
|
from torch import nn, einsum |
|
from torch.amp.autocast_mode import autocast |
|
from einops import rearrange, repeat |
|
from typing import Optional, Any |
|
from .util import checkpoint |
|
|
|
try: |
|
import xformers |
|
import xformers.ops |
|
XFORMERS_IS_AVAILBLE = True |
|
except: |
|
XFORMERS_IS_AVAILBLE = False |
|
|
|
|
|
import os |
|
|
|
_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32") |
|
|
|
|
|
def uniq(arr): |
|
return {el: True for el in arr}.keys() |
|
|
|
|
|
def default(val, d): |
|
if val is not None: |
|
return val |
|
return d() if isfunction(d) else d |
|
|
|
|
|
def max_neg_value(t): |
|
return -torch.finfo(t.dtype).max |
|
|
|
|
|
def init_(tensor): |
|
dim = tensor.shape[-1] |
|
std = 1 / math.sqrt(dim) |
|
tensor.uniform_(-std, std) |
|
return tensor |
|
|
|
|
|
|
|
class GEGLU(nn.Module): |
|
|
|
def __init__(self, dim_in, dim_out): |
|
super().__init__() |
|
self.proj = nn.Linear(dim_in, dim_out * 2) |
|
|
|
def forward(self, x): |
|
x, gate = self.proj(x).chunk(2, dim=-1) |
|
return x * F.gelu(gate) |
|
|
|
|
|
class FeedForward(nn.Module): |
|
|
|
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): |
|
super().__init__() |
|
inner_dim = int(dim * mult) |
|
dim_out = default(dim_out, dim) |
|
project_in = nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) if not glu else GEGLU(dim, inner_dim) |
|
|
|
self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)) |
|
|
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
|
|
def zero_module(module): |
|
""" |
|
Zero out the parameters of a module and return it. |
|
""" |
|
for p in module.parameters(): |
|
p.detach().zero_() |
|
return module |
|
|
|
|
|
def Normalize(in_channels): |
|
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) |
|
|
|
|
|
class SpatialSelfAttention(nn.Module): |
|
|
|
def __init__(self, in_channels): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
|
|
self.norm = Normalize(in_channels) |
|
self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) |
|
self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) |
|
self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) |
|
self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) |
|
|
|
def forward(self, x): |
|
h_ = x |
|
h_ = self.norm(h_) |
|
q = self.q(h_) |
|
k = self.k(h_) |
|
v = self.v(h_) |
|
|
|
|
|
b, c, h, w = q.shape |
|
q = rearrange(q, 'b c h w -> b (h w) c') |
|
k = rearrange(k, 'b c h w -> b c (h w)') |
|
w_ = torch.einsum('bij,bjk->bik', q, k) |
|
|
|
w_ = w_ * (int(c)**(-0.5)) |
|
w_ = torch.nn.functional.softmax(w_, dim=2) |
|
|
|
|
|
v = rearrange(v, 'b c h w -> b c (h w)') |
|
w_ = rearrange(w_, 'b i j -> b j i') |
|
h_ = torch.einsum('bij,bjk->bik', v, w_) |
|
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h) |
|
h_ = self.proj_out(h_) |
|
|
|
return x + h_ |
|
|
|
|
|
class CrossAttention(nn.Module): |
|
|
|
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): |
|
super().__init__() |
|
inner_dim = dim_head * heads |
|
context_dim = default(context_dim, query_dim) |
|
|
|
self.scale = dim_head**-0.5 |
|
self.heads = heads |
|
|
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) |
|
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) |
|
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) |
|
|
|
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) |
|
|
|
def forward(self, x, context=None, mask=None): |
|
h = self.heads |
|
|
|
q = self.to_q(x) |
|
context = default(context, x) |
|
k = self.to_k(context) |
|
v = self.to_v(context) |
|
|
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) |
|
|
|
|
|
if _ATTN_PRECISION == "fp32": |
|
with autocast(enabled=False, device_type='cuda'): |
|
q, k = q.float(), k.float() |
|
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale |
|
else: |
|
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale |
|
|
|
del q, k |
|
|
|
if mask is not None: |
|
mask = rearrange(mask, 'b ... -> b (...)') |
|
max_neg_value = -torch.finfo(sim.dtype).max |
|
mask = repeat(mask, 'b j -> (b h) () j', h=h) |
|
sim.masked_fill_(~mask, max_neg_value) |
|
|
|
|
|
sim = sim.softmax(dim=-1) |
|
|
|
out = einsum('b i j, b j d -> b i d', sim, v) |
|
out = rearrange(out, '(b h) n d -> b n (h d)', h=h) |
|
return self.to_out(out) |
|
|
|
|
|
class MemoryEfficientCrossAttention(nn.Module): |
|
|
|
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0): |
|
super().__init__() |
|
|
|
inner_dim = dim_head * heads |
|
context_dim = default(context_dim, query_dim) |
|
|
|
self.heads = heads |
|
self.dim_head = dim_head |
|
|
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) |
|
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) |
|
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) |
|
|
|
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) |
|
self.attention_op: Optional[Any] = None |
|
|
|
def forward(self, x, context=None, mask=None): |
|
q = self.to_q(x) |
|
context = default(context, x) |
|
k = self.to_k(context) |
|
v = self.to_v(context) |
|
|
|
b, _, _ = q.shape |
|
q, k, v = map( |
|
lambda t: t.unsqueeze(3).reshape(b, t.shape[1], self.heads, self.dim_head).permute(0, 2, 1, 3).reshape(b * self.heads, t.shape[1], self.dim_head).contiguous(), |
|
(q, k, v), |
|
) |
|
|
|
|
|
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op) |
|
|
|
if mask is not None: |
|
raise NotImplementedError |
|
out = (out.unsqueeze(0).reshape(b, self.heads, out.shape[1], self.dim_head).permute(0, 2, 1, 3).reshape(b, out.shape[1], self.heads * self.dim_head)) |
|
return self.to_out(out) |
|
|
|
|
|
class BasicTransformerBlock(nn.Module): |
|
ATTENTION_MODES = { |
|
"softmax": CrossAttention, |
|
"softmax-xformers": MemoryEfficientCrossAttention |
|
} |
|
|
|
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, disable_self_attn=False): |
|
super().__init__() |
|
attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax" |
|
assert attn_mode in self.ATTENTION_MODES |
|
attn_cls = self.ATTENTION_MODES[attn_mode] |
|
self.disable_self_attn = disable_self_attn |
|
self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, context_dim=context_dim if self.disable_self_attn else None) |
|
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) |
|
self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout) |
|
self.norm1 = nn.LayerNorm(dim) |
|
self.norm2 = nn.LayerNorm(dim) |
|
self.norm3 = nn.LayerNorm(dim) |
|
self.checkpoint = checkpoint |
|
|
|
def forward(self, x, context=None): |
|
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) |
|
|
|
def _forward(self, x, context=None): |
|
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x |
|
x = self.attn2(self.norm2(x), context=context) + x |
|
x = self.ff(self.norm3(x)) + x |
|
return x |
|
|
|
|
|
class SpatialTransformer(nn.Module): |
|
""" |
|
Transformer block for image-like data. |
|
First, project the input (aka embedding) |
|
and reshape to b, t, d. |
|
Then apply standard transformer action. |
|
Finally, reshape to image |
|
NEW: use_linear for more efficiency instead of the 1x1 convs |
|
""" |
|
|
|
def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None, disable_self_attn=False, use_linear=False, use_checkpoint=True): |
|
super().__init__() |
|
assert context_dim is not None |
|
if not isinstance(context_dim, list): |
|
context_dim = [context_dim] |
|
self.in_channels = in_channels |
|
inner_dim = n_heads * d_head |
|
self.norm = Normalize(in_channels) |
|
if not use_linear: |
|
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) |
|
else: |
|
self.proj_in = nn.Linear(in_channels, inner_dim) |
|
|
|
self.transformer_blocks = nn.ModuleList([BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d], disable_self_attn=disable_self_attn, checkpoint=use_checkpoint) for d in range(depth)]) |
|
if not use_linear: |
|
self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)) |
|
else: |
|
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim)) |
|
self.use_linear = use_linear |
|
|
|
def forward(self, x, context=None): |
|
|
|
if not isinstance(context, list): |
|
context = [context] |
|
b, c, h, w = x.shape |
|
x_in = x |
|
x = self.norm(x) |
|
if not self.use_linear: |
|
x = self.proj_in(x) |
|
x = rearrange(x, 'b c h w -> b (h w) c').contiguous() |
|
if self.use_linear: |
|
x = self.proj_in(x) |
|
for i, block in enumerate(self.transformer_blocks): |
|
x = block(x, context=context[i]) |
|
if self.use_linear: |
|
x = self.proj_out(x) |
|
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous() |
|
if not self.use_linear: |
|
x = self.proj_out(x) |
|
return x + x_in |
|
|
|
|
|
class BasicTransformerBlock3D(BasicTransformerBlock): |
|
|
|
def forward(self, x, context=None, num_frames=1): |
|
return checkpoint(self._forward, (x, context, num_frames), self.parameters(), self.checkpoint) |
|
|
|
def _forward(self, x, context=None, num_frames=1): |
|
x = rearrange(x, "(b f) l c -> b (f l) c", f=num_frames).contiguous() |
|
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x |
|
x = rearrange(x, "b (f l) c -> (b f) l c", f=num_frames).contiguous() |
|
x = self.attn2(self.norm2(x), context=context) + x |
|
x = self.ff(self.norm3(x)) + x |
|
return x |
|
|
|
|
|
class SpatialTransformer3D(nn.Module): |
|
''' 3D self-attention ''' |
|
|
|
def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None, disable_self_attn=False, use_linear=False, use_checkpoint=True): |
|
super().__init__() |
|
assert context_dim is not None |
|
if not isinstance(context_dim, list): |
|
context_dim = [context_dim] |
|
self.in_channels = in_channels |
|
inner_dim = n_heads * d_head |
|
self.norm = Normalize(in_channels) |
|
if not use_linear: |
|
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) |
|
else: |
|
self.proj_in = nn.Linear(in_channels, inner_dim) |
|
|
|
self.transformer_blocks = nn.ModuleList([BasicTransformerBlock3D(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d], disable_self_attn=disable_self_attn, checkpoint=use_checkpoint) for d in range(depth)]) |
|
if not use_linear: |
|
self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)) |
|
else: |
|
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim)) |
|
self.use_linear = use_linear |
|
|
|
def forward(self, x, context=None, num_frames=1): |
|
|
|
if not isinstance(context, list): |
|
context = [context] |
|
b, c, h, w = x.shape |
|
x_in = x |
|
x = self.norm(x) |
|
if not self.use_linear: |
|
x = self.proj_in(x) |
|
x = rearrange(x, 'b c h w -> b (h w) c').contiguous() |
|
if self.use_linear: |
|
x = self.proj_in(x) |
|
for i, block in enumerate(self.transformer_blocks): |
|
x = block(x, context=context[i], num_frames=num_frames) |
|
if self.use_linear: |
|
x = self.proj_out(x) |
|
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous() |
|
if not self.use_linear: |
|
x = self.proj_out(x) |
|
return x + x_in |
|
|