File size: 1,919 Bytes
366ff74 be2dff4 3c6f67b 611c1c8 c64bd19 1ce654a 14b57cc c54d84f 6464f4b c54d84f 3c5efc3 c54d84f 975635a c54d84f 975635a c54d84f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: mit
language:
- en
pipeline_tag: audio-classification
tags:
- wavlm
- msp-podcast
- emotion-recognition
- audio
- speech
- valence
- arousal
- dominance
---
The model was trained on [MSP-Podcast](https://ecs.utdallas.edu/research/researchlabs/msp-lab/MSP-Podcast.html) for the Odyssey 2024 Emotion Recognition competition baseline<br>
This particular model is the multi-attributed based model which predict arousal, dominance and valence in a range of approximately 0...1.
For more details: [demo](https://huggingface.co/spaces/3loi/WavLM-SER-Multi-Baseline-Odyssey2024), [paper/soon]() and [GitHub](https://github.com/MSP-UTD/MSP-Podcast_Challenge/tree/main).
```
@misc{SER_Challenge_2024,
author = {Goncalves, Lucas and Salman, Ali and Reddy, Abinay and Velazquez, Laureano Moro and Thebaud, Thomas and Garcia, Leibny Paola and Dehak, Najim and Sisman, Berrak and Busso, Carlos},
title = {Odyssey 2024 - Emotion Recognition Challenge},
year = {2024},
publisher = {GitHub},
journal = {MSP-Podcast Challenge},
howpublished = {\url{https://github.com/MSP-UTD/MSP-Podcast_Challenge}},
}
```
# Usage
```python
from transformers import AutoModelForAudioClassification
import librosa, torch
#load model
model = AutoModelForAudioClassification.from_pretrained("3loi/SER-Odyssey-Baseline-WavLM-Multi-Attributes", trust_remote_code=True)
#get mean/std
mean = model.config.mean
std = model.config.std
#load an audio file
audio_path = "/path/to/audio.wav"
raw_wav, _ = librosa.load(audio_path, sr=model.config.sampling_rate)
#normalize the audio by mean/std
norm_wav = (raw_wav - mean) / (std+0.000001)
#generate the mask
mask = torch.ones(1, len(norm_wav))
wavs = torch.tensor(norm_wav).unsqueeze(0)
#predict
with torch.no_grad():
pred = model(wavs, mask)
print(model.config.id2label)
print(pred)
#{0: 'arousal', 1: 'dominance', 2: 'valence'}
#tensor([[0.3670, 0.4553, 0.4240]])
``` |