4bit
/

Text Generation
Transformers
PyTorch
English
llama
causal-lm
text-generation-inference
File size: 13,141 Bytes
07c9a9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
---
language:
  - en
tags:
  - causal-lm
  - llama
license: cc-by-nc-sa-4.0
datasets:
  - OpenAssistant/oasst1
  - nomic-ai/gpt4all_prompt_generations
  - tatsu-lab/alpaca
inference: false
---

# StableVicuna-13B-GPTQ

This repo contains 4bit GPTQ format quantised models of [CarterAI's StableVicuna 13B](https://huggingface.co/CarperAI/stable-vicuna-13b-delta).

It is the result of first merging the deltas from the above repository with the original Llama 13B weights, then quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).

## Repositories available

* [4bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/stable-vicuna-13B-GPTQ).
* [4bit and 5bit GGML models for CPU inference](https://huggingface.co/TheBloke/stable-vicuna-13B-GGML).
* [Unquantised 16bit model in HF format](https://huggingface.co/TheBloke/stable-vicuna-13B-HF).

## PROMPT TEMPLATE

This model works best with the following prompt template:

```
### Human: your prompt here
### Assistant:
```

## How to easily download and use this model in text-generation-webui

Load text-generation-webui as you normally do.

1. Click the **Model tab**.
2. Under **Download custom model or LoRA**, enter this repo name: `TheBloke/stable-vicuna-13B-GPTQ`.
3. Click **Download**.
4. Wait until it says it's finished downloading.
5. As this is a GPTQ model, fill in the `GPTQ parameters` on the right: `Bits = 4`, `Groupsize = 128`, `model_type = Llama`
6. Now click the **Refresh** icon next to **Model** in the top left.
7. In the **Model drop-down**: choose this model: `stable-vicuna-13B-GPTQ`.
8. Click **Reload the Model** in the top right.
9. Once it says it's loaded, click the **Text Generation tab** and enter a prompt!

## Provided files

I have uploaded two versions of the GPTQ.

**Compatible file - stable-vicuna-13B-GPTQ-4bit.compat.no-act-order.safetensors**

In the `main` branch - the default one - you will find `stable-vicuna-13B-GPTQ-4bit.compat.no-act-order.safetensors`

This will work with all versions of GPTQ-for-LLaMa. It has maximum compatibility

It was created without the `--act-order` parameter. It may have slightly lower inference quality compared to the other file, but is guaranteed to work on all versions of GPTQ-for-LLaMa and text-generation-webui.

* `stable-vicuna-13B-GPTQ-4bit.compat.no-act-order.safetensors`
  * Works with all versions of GPTQ-for-LLaMa code, both Triton and CUDA branches
  * Works with text-generation-webui one-click-installers
  * Parameters: Groupsize = 128g. No act-order.
  * Command used to create the GPTQ:
    ```
    CUDA_VISIBLE_DEVICES=0 python3 llama.py stable-vicuna-13B-HF c4 --wbits 4 --true-sequential --groupsize 128 --save_safetensors stable-vicuna-13B-GPTQ-4bit.no-act-order.safetensors
    ```

**Latest file - stable-vicuna-13B-GPTQ-4bit.latest.act-order.safetensors**

Created for more recent versions of GPTQ-for-LLaMa, and uses the `--act-order` flag for maximum theoretical performance.

To access this file, please switch to the `latest` branch fo this repo and download from there.

* `stable-vicuna-13B-GPTQ-4bit.latest.act-order.safetensors`
  * Only works with recent GPTQ-for-LLaMa code
  * **Does not** work with text-generation-webui one-click-installers
  * Parameters: Groupsize = 128g. **act-order**.
  * Offers highest quality quantisation, but requires recent GPTQ-for-LLaMa code
  * Command used to create the GPTQ:
    ```
    CUDA_VISIBLE_DEVICES=0 python3 llama.py stable-vicuna-13B-HF c4 --wbits 4 --true-sequential --act-order --groupsize 128 --save_safetensors stable-vicuna-13B-GPTQ-4bit.act-order.safetensors
    ```
 
## Manual instructions for `text-generation-webui`

File `stable-vicuna-13B-GPTQ-4bit.compat.no-act-order.safetensors` can be loaded the same as any other GPTQ file, without requiring any updates to [oobaboogas text-generation-webui](https://github.com/oobabooga/text-generation-webui).

[Instructions on using GPTQ 4bit files in text-generation-webui are here](https://github.com/oobabooga/text-generation-webui/wiki/GPTQ-models-\(4-bit-mode\)).

The other `safetensors` model file was created using `--act-order` to give the maximum possible quantisation quality, but this means it requires that the latest GPTQ-for-LLaMa is used inside the UI.

If you want to use the act-order `safetensors` files and need to update the Triton branch of GPTQ-for-LLaMa, here are the commands I used to clone the Triton branch of GPTQ-for-LLaMa, clone text-generation-webui, and install GPTQ into the UI:
```
# Clone text-generation-webui, if you don't already have it
git clone https://github.com/oobabooga/text-generation-webui
# Make a repositories directory
mkdir text-generation-webui/repositories
cd text-generation-webui/repositories
# Clone the latest GPTQ-for-LLaMa code inside text-generation-webui
git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa
```

Then install this model into `text-generation-webui/models` and launch the UI as follows:
```
cd text-generation-webui
python server.py --model stable-vicuna-13B-GPTQ --wbits 4 --groupsize 128 --model_type Llama # add any other command line args you want
```

The above commands assume you have installed all dependencies for GPTQ-for-LLaMa and text-generation-webui. Please see their respective repositories for further information.

If you can't update GPTQ-for-LLaMa or don't want to, you can use `stable-vicuna-13B-GPTQ-4bit.no-act-order.safetensors` as mentioned above, which should work without any upgrades to text-generation-webui.

# Original StableVicuna-13B model card

## Model Description

StableVicuna-13B is a [Vicuna-13B v0](https://huggingface.co/lmsys/vicuna-13b-delta-v0) model fine-tuned using reinforcement learning from human feedback (RLHF) via Proximal Policy Optimization (PPO) on various conversational and instructional datasets.

## Model Details

* **Trained by**: [Duy Phung](https://github.com/PhungVanDuy) of [CarperAI](https://carper.ai)
* **Model type:**  **StableVicuna-13B** is an auto-regressive language model based on the LLaMA transformer architecture.
* **Language(s)**: English
* **Library**: [trlX](https://github.com/CarperAI/trlx)
* **License for delta weights**: [CC-BY-NC-SA-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)
  * *Note*: License for the base LLaMA model's weights is Meta's [non-commercial bespoke license](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md).
* **Contact**: For questions and comments about the model, visit the [CarperAI](https://discord.com/invite/KgfkCVYHdu) and [StableFoundation](https://discord.gg/stablediffusion) Discord servers.

| Hyperparameter            | Value |
|---------------------------|-------|
| \\(n_\text{parameters}\\) | 13B   |
| \\(d_\text{model}\\)      | 5120  |
| \\(n_\text{layers}\\)     | 40    |
| \\(n_\text{heads}\\)      | 40    |

## Training

### Training Dataset

StableVicuna-13B is fine-tuned on a mix of three datasets. [OpenAssistant Conversations Dataset (OASST1)](https://huggingface.co/datasets/OpenAssistant/oasst1), a human-generated, human-annotated assistant-style conversation corpus consisting of 161,443 messages distributed across 66,497 conversation trees, in 35 different languages;
[GPT4All Prompt Generations](https://huggingface.co/datasets/nomic-ai/gpt4all_prompt_generations), a dataset of 400k prompts and responses generated by GPT-4; and [Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca),  a dataset of 52,000 instructions and demonstrations generated by OpenAI's text-davinci-003 engine.

The reward model used during RLHF was also trained on [OpenAssistant Conversations Dataset (OASST1)](https://huggingface.co/datasets/OpenAssistant/oasst1) along with two other datasets: [Anthropic HH-RLHF](https://huggingface.co/datasets/Anthropic/hh-rlhf), a dataset of preferences about AI assistant helpfulness and harmlessness; and [Stanford Human Preferences Dataset](https://huggingface.co/datasets/stanfordnlp/SHP) a dataset of 385K collective human preferences over responses to questions/instructions in 18 different subject areas, from cooking to legal advice.

### Training Procedure

`CarperAI/stable-vicuna-13b-delta` was trained using PPO as implemented in [`trlX`](https://github.com/CarperAI/trlx/blob/main/trlx/trainer/accelerate_ppo_trainer.py) with the following configuration:

|  Hyperparameter   |  Value  |
|-------------------|---------|
| num_rollouts      | 128     |
| chunk_size        | 16      |
| ppo_epochs        | 4       |
| init_kl_coef      | 0.1     |
| target            | 6       |
| horizon           | 10000   |
| gamma             | 1       |
| lam               | 0.95    |
| cliprange         | 0.2     |
| cliprange_value   | 0.2     |
| vf_coef           | 1.0     |
| scale_reward      | None    |
| cliprange_reward  | 10      |
| generation_kwargs |         |
| max_length        | 512     |
| min_length        | 48      |
| top_k             | 0.0     |
| top_p             | 1.0     |
| do_sample         | True    |
| temperature       | 1.0     |

## Use and Limitations

### Intended Use

This model is intended to be used for text generation with a focus on conversational tasks. Users may further fine-tune the model on their own data to improve the model's performance on their specific tasks in accordance with the non-commercial [license](https://creativecommons.org/licenses/by-nc/4.0/).

### Limitations and bias

The base LLaMA model is trained on various data, some of which may contain offensive, harmful, and biased content that can lead to toxic behavior. See Section 5.1 of the LLaMA [paper](https://arxiv.org/abs/2302.13971). We have not performed any studies to determine how fine-tuning on the aforementioned datasets affect the model's behavior and toxicity. Do not treat chat responses from this model as a substitute for human judgment or as a source of truth. Please use responsibly.

## Acknowledgements

This work would not have been possible without the support of [Stability AI](https://stability.ai/).

## Citations

```bibtex
@article{touvron2023llama,
  title={LLaMA: Open and Efficient Foundation Language Models},
  author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume},
  journal={arXiv preprint arXiv:2302.13971},
  year={2023}
}
```

```bibtex
@misc{vicuna2023,
    title = {Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality},
    url = {https://vicuna.lmsys.org},
    author = {Chiang, Wei-Lin and Li, Zhuohan and Lin, Zi and Sheng, Ying and Wu, Zhanghao and Zhang, Hao and Zheng, Lianmin and Zhuang, Siyuan and Zhuang, Yonghao and Gonzalez, Joseph E. and Stoica, Ion and Xing, Eric P.},
    month = {March},
    year = {2023}
}
```

```bibtex
@misc{gpt4all,
  author = {Yuvanesh Anand and Zach Nussbaum and Brandon Duderstadt and Benjamin Schmidt and Andriy Mulyar},
  title = {GPT4All: Training an Assistant-style Chatbot with Large Scale Data Distillation from GPT-3.5-Turbo},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/nomic-ai/gpt4all}},
}
```

```bibtex
@misc{alpaca,
  author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
  title = {Stanford Alpaca: An Instruction-following LLaMA model},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
}
```

```bibtex
@software{leandro_von_werra_2023_7790115,
  author       = {Leandro von Werra and
                  Alex Havrilla and
                  Max reciprocated and
                  Jonathan Tow and
                  Aman cat-state and
                  Duy V. Phung and
                  Louis Castricato and
                  Shahbuland Matiana and
                  Alan and
                  Ayush Thakur and
                  Alexey Bukhtiyarov and
                  aaronrmm and
                  Fabrizio Milo and
                  Daniel and
                  Daniel King and
                  Dong Shin and
                  Ethan Kim and
                  Justin Wei and
                  Manuel Romero and
                  Nicky Pochinkov and
                  Omar Sanseviero and
                  Reshinth Adithyan and
                  Sherman Siu and
                  Thomas Simonini and
                  Vladimir Blagojevic and
                  Xu Song and
                  Zack Witten and
                  alexandremuzio and
                  crumb},
  title        = {{CarperAI/trlx: v0.6.0: LLaMa (Alpaca), Benchmark 
                   Util, T5 ILQL, Tests}},
  month        = mar,
  year         = 2023,
  publisher    = {Zenodo},
  version      = {v0.6.0},
  doi          = {10.5281/zenodo.7790115},
  url          = {https://doi.org/10.5281/zenodo.7790115}
}
```