--- language: - ko library_name: transformers --- # Model Card for Model ID readme coming soon ## Model Details ### Model Description This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** 4n3mone (YongSang Yoo) - **Model type:** chatglm - **Language(s) (NLP):** Korean - **License:** glm-4 - **Finetuned from model [optional]:** THUDM/glm-4-9b-chat ### Model Sources [optional] - **Repository:** THUDM/glm-4-9b-chat - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams # GLM-4-9B-Chat # If you encounter OOM (Out of Memory) issues, it is recommended to reduce max_model_len or increase tp_size. max_model_len, tp_size = 131072, 1 model_name = "4n3mone/glm-4-ko-9b-chat-preview" prompt = [{"role": "user", "content": "ν”ΌμΉ΄μΈ„λž‘ 아ꡬλͺ¬ μ€‘μ—μ„œ λˆ„κ°€ 더 κ·€μ—¬μ›Œ?"}] tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) llm = LLM( model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True, # If you encounter OOM (Out of Memory) issues, it is recommended to enable the following parameters. # enable_chunked_prefill=True, # max_num_batched_tokens=8192 ) stop_token_ids = [151329, 151336, 151338] sampling_params = SamplingParams(temperature=0.95, max_tokens=1024, stop_token_ids=stop_token_ids) inputs = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True) outputs = llm.generate(prompts=inputs, sampling_params=sampling_params) print(outputs[0].outputs[0].text) model.generate(prompt) ``` ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]