--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy - f1 - precision - recall model-index: - name: distilhubert-finetuned-cry-detector results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9852941176470589 - name: F1 type: f1 value: 0.9853150765112866 - name: Precision type: precision value: 0.9853868369053048 - name: Recall type: recall value: 0.9852941176470589 --- # distilhubert-finetuned-cry-detector This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0332 - Accuracy: 0.9853 - F1: 0.9853 - Precision: 0.9854 - Recall: 0.9853 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 123 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.001 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 0.9412 | 12 | 0.1931 | 0.9363 | 0.9365 | 0.9372 | 0.9363 | | No log | 1.9608 | 25 | 0.0950 | 0.9706 | 0.9704 | 0.9710 | 0.9706 | | No log | 2.9804 | 38 | 0.0611 | 0.9804 | 0.9804 | 0.9804 | 0.9804 | | No log | 4.0 | 51 | 0.0492 | 0.9853 | 0.9853 | 0.9853 | 0.9853 | | No log | 4.9412 | 63 | 0.0588 | 0.9804 | 0.9805 | 0.9814 | 0.9804 | | No log | 5.9608 | 76 | 0.0368 | 0.9853 | 0.9853 | 0.9854 | 0.9853 | | No log | 6.9804 | 89 | 0.0382 | 0.9902 | 0.9902 | 0.9903 | 0.9902 | | No log | 8.0 | 102 | 0.0318 | 0.9951 | 0.9951 | 0.9951 | 0.9951 | | No log | 8.9412 | 114 | 0.0331 | 0.9853 | 0.9853 | 0.9854 | 0.9853 | | No log | 9.4118 | 120 | 0.0332 | 0.9853 | 0.9853 | 0.9854 | 0.9853 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1