--- license: mit base_model: neuralmind/bert-base-portuguese-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: hate_BERTimbau_v1 results: [] --- # hate_BERTimbau_v1 This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1389 - Precision: 0.7715 - Recall: 0.7690 - F1: 0.7700 - Accuracy: 0.7690 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5196 | 1.0 | 284 | 0.4981 | 0.7509 | 0.7566 | 0.7482 | 0.7566 | | 0.4019 | 2.0 | 568 | 0.4680 | 0.7923 | 0.7813 | 0.7843 | 0.7813 | | 0.2706 | 3.0 | 852 | 0.6745 | 0.7525 | 0.7531 | 0.7355 | 0.7531 | | 0.1601 | 4.0 | 1136 | 0.9990 | 0.7632 | 0.7672 | 0.7573 | 0.7672 | | 0.0975 | 5.0 | 1420 | 1.1389 | 0.7715 | 0.7690 | 0.7700 | 0.7690 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1