--- license: mit tags: - generated_from_trainer base_model: neuralmind/bert-base-portuguese-cased metrics: - precision - recall - f1 - accuracy model-index: - name: hate_BERTimbau_v1 results: [] --- # hate_BERTimbau_v1 This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0345 - Precision: 0.7690 - Recall: 0.7690 - F1: 0.7690 - Accuracy: 0.7690 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5301 | 1.0 | 284 | 0.5012 | 0.7443 | 0.7443 | 0.7443 | 0.7443 | | 0.4174 | 2.0 | 568 | 0.4574 | 0.7725 | 0.7725 | 0.7725 | 0.7725 | | 0.2942 | 3.0 | 852 | 0.5691 | 0.7760 | 0.7760 | 0.7760 | 0.7760 | | 0.1929 | 4.0 | 1136 | 0.7652 | 0.7672 | 0.7672 | 0.7672 | 0.7672 | | 0.1283 | 5.0 | 1420 | 0.9161 | 0.7601 | 0.7601 | 0.7601 | 0.7601 | | 0.0966 | 6.0 | 1704 | 1.0345 | 0.7690 | 0.7690 | 0.7690 | 0.7690 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1