Agent trained to ~220 score.
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 276.27 +/- 22.83
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a6f64c409d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a6f64c40a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a6f64c40af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a6f64c40b80>", "_build": "<function ActorCriticPolicy._build at 0x7a6f64c40c10>", "forward": "<function ActorCriticPolicy.forward at 0x7a6f64c40ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a6f64c40d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a6f64c40dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a6f64c40e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a6f64c40ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a6f64c40f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a6f64c41000>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a6f64dd5f80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2560000, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719203586047813842, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI3rpL17cI26zWLEtA40e7AQOjG7Ig2nMwAAAAAAAIA/c2mOvcPpG7psBqu8MVJOMZBlzztmr7mzAACAPwAAgD/AGIc9A2C/P5Znxz55vws9yjwwvUT8Rz0AAAAAAAAAAIDeHT02uCC8k1DMu3GWgrzMgoK9bLNHvgAAgD8AAIA/IDIiPmlWJz6NIeG8IxmJvrq0BT3eeq28AAAAAAAAAABmbuw8VBeNPjYkJjyxS6S+QXsWPRPl07sAAAAAAAAAAABPt7w07Uc+oMBCPWUekr4pezc9utn+OgAAAAAAAAAA2jj+PcOGM7wyK7m9yYTyvXIK3rxe4ka9AACAPwAAgD9be9S+BVXjPoW3Rz4/8v2+zxSTvp1BWD4AAAAAAAAAAGY91D2upcu6lVZtvG9ClDxpisq7MwyAPQAAgD8AAIA/zTgwPgPBSbwWTLY7SrYCug3TtL1S89W6AAAAAAAAgD/NscI8Tr6JPSvJQL5HrJK+QSvnvd6PL70AAAAAAAAAAObVTz1UIVQ+vV6+PHkypL7MRR09vKw6PAAAAAAAAAAAs0tXvY+WQ7parDY0zn8srn4qlDq4J5qzAACAPwAAgD86qDs+oVa8vDIMtbpsOTA5mzMovhth+jkAAIA/AACAP8CgwT0Nc0A/bgXBPeO39r7AZc89q39hPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.74464, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHC5KEJ0GNeMAWyUS+KMAXSUR0CjNfxZdOZcdX2UKGgGR0BwECL0jC53aAdL4mgIR0CjNhjOkcjrdX2UKGgGR0BARw9A5aNdaAdLs2gIR0CjNiXOnl4kdX2UKGgGR0B0CcXsPatcaAdLx2gIR0CjNoGXgLqmdX2UKGgGR0ByOXP/rB0qaAdL6WgIR0CjNqexfOUudX2UKGgGR0BxkJ4SpR4yaAdL6mgIR0CjNsQBo24vdX2UKGgGR0Bxj4rJ8v25aAdL3GgIR0CjN3TW5H3DdX2UKGgGR0BxUVBX0XgtaAdL2GgIR0CjOBE+xGDudX2UKGgGR0Bxund56dDqaAdL2GgIR0CjOGtDc/MXdX2UKGgGR0ByzPCl7+kyaAdLxGgIR0CjOMl98Z1ndX2UKGgGR0BwhDasZHd5aAdLxWgIR0CjOOOwHJLedX2UKGgGR0BwqWeEqUeNaAdL6GgIR0CjOOoSDh99dX2UKGgGR0ByAuttALRbaAdL2GgIR0CjOPVoYekpdX2UKGgGR0BCkQf6oESvaAdLqmgIR0CjOVOEdvKmdX2UKGgGR0BxaKKAJ9iMaAdLv2gIR0CjOVwbEP1+dX2UKGgGR0Bx1Wjj7yhBaAdL32gIR0CjOV7edkJ8dX2UKGgGR0BxSuvPkaMraAdL+mgIR0CjOcx28qWkdX2UKGgGR0Bk01TDO1OTaAdN6ANoCEdAoznhTyauwHV9lChoBkdAcCKvysjmjmgHS95oCEdAoznwD3dsSHV9lChoBkdAcVWL1VYISmgHTbEBaAhHQKM7i4EwFkh1fZQoaAZHQHFYzXvphWpoB0vtaAhHQKM7i5ksjFB1fZQoaAZHQHGKImgJ1JVoB0vYaAhHQKM70it7rs11fZQoaAZHQHAWp84PwuxoB0vdaAhHQKM8p5kbxVh1fZQoaAZHQHB9jb349HNoB0v6aAhHQKM8pfsNUfh1fZQoaAZHQHC+hP9DQZ5oB0vjaAhHQKM8ue18b711fZQoaAZHQHJLKn3ta6loB0v1aAhHQKM86Rr8BMl1fZQoaAZHQHCOu2JBPbhoB0vbaAhHQKM9FSQ5myx1fZQoaAZHQHC+wwGnn+1oB0vpaAhHQKM9SSV4X411fZQoaAZHQHOPHXI2fkFoB0vHaAhHQKM9YoDPnjh1fZQoaAZHQHEXiyMUAT9oB00QAWgIR0CjPW7dadMCdX2UKGgGR0BwQIEt/WlNaAdL3mgIR0CjPZA1FYuCdX2UKGgGR0BxIN6cAimmaAdNBgFoCEdAoz2o4sEq2HV9lChoBkdAcOBjZ+QU6GgHTQIBaAhHQKM+TtAs0551fZQoaAZHQGM9uIhyKeloB03oA2gIR0CjPsEdFOO9dX2UKGgGR0Bt19WfbsWwaAdL12gIR0CjPvApjMFEdX2UKGgGR0BwKLeBQN1AaAdL6GgIR0CjPzrk8zRAdX2UKGgGR0Bx1sczZYgaaAdNAgFoCEdAo0ASv3ai9XV9lChoBkdAcKgEbHZK4GgHS9NoCEdAo0BeYnfEXXV9lChoBkdAcC2ha1TisGgHS+JoCEdAo0CSPdVNpXV9lChoBkdAc29PnB+F12gHS89oCEdAo0DHPcBU73V9lChoBkdAcAOUpNKywGgHS+NoCEdAo0DuP3i71HV9lChoBkdAbrlJaq0dBGgHS/1oCEdAo0Edc4YJmnV9lChoBkdAbsvNM495hWgHS+NoCEdAo0FwSzw+dXV9lChoBkdAcPp6O5rgwWgHS9poCEdAo0GfD1oQF3V9lChoBkdAcAQ7tiQT22gHS9NoCEdAo0GfKyOaOXV9lChoBkdAb8FZyuIRAmgHS/BoCEdAo0HPgccU/XV9lChoBkdAb7tM9r4332gHTRgBaAhHQKNCjbItDlZ1fZQoaAZHQHHHkXtShrZoB0vzaAhHQKNDh7N0NjN1fZQoaAZHQHJ1r9l2/ztoB0veaAhHQKNDklOXVsl1fZQoaAZHQEfaiTMaCMBoB0usaAhHQKND3yLhrFh1fZQoaAZHQHGYOA7PppxoB0vjaAhHQKND/QdjoZB1fZQoaAZHQHHtaEeyRjloB0v5aAhHQKNEDBBRhtt1fZQoaAZHQG/pkuHvc8FoB0vFaAhHQKNEeeuFHrh1fZQoaAZHQG9ZR6Ww/xFoB0vXaAhHQKNEloV2zOZ1fZQoaAZHQF9Od2xIJ7doB03oA2gIR0CjRLWdd3SsdX2UKGgGR0BJr9qUNayKaAdLvWgIR0CjRO163RXwdX2UKGgGR0BxyA6tDD0laAdL42gIR0CjRQ6be/HpdX2UKGgGR0BxZ8vN/vv0aAdL32gIR0CjRR8jzI3jdX2UKGgGR0Bv/KVUuL75aAdL9GgIR0CjRSlbeMyadX2UKGgGR0BAdoEjgQ6IaAdLuWgIR0CjRZRqXWvsdX2UKGgGR0Bw/Dn1WbPQaAdL8mgIR0CjRZ4e1a4ddX2UKGgGR0BxR+/L1VYIaAdNAQFoCEdAo0XLNKRMe3V9lChoBkdAb3w/CZWq+GgHS/toCEdAo0XZV+7UX3V9lChoBkdAUkoNrj5sTGgHS7FoCEdAo0YTzGxUvXV9lChoBkdAcuroM8YAKmgHS+poCEdAo0ZCn+AEuHV9lChoBkdAcX+6Tnq3VmgHS99oCEdAo0ZtkUbkwXV9lChoBkdAcFM8bJfYz2gHS9loCEdAo0Z4GB4D93V9lChoBkdAcdazFMqSYGgHTQEBaAhHQKNGjnanJkp1fZQoaAZHQHIhnrMTviNoB0vHaAhHQKNGsUwi7kJ1fZQoaAZHQG4vY2bXpW5oB00KAWgIR0CjR5zKDCgsdX2UKGgGR0Bu4twLmZE2aAdNBgFoCEdAo0ewRAbADnV9lChoBkdAcTcr8zhxYWgHS+9oCEdAo0fJW912aHV9lChoBkdAbzOnTiKiwmgHS+5oCEdAo0fYKneiz3V9lChoBkdAb9Hr4WUKRmgHS+1oCEdAo0fhwS8J2XV9lChoBkdAcdxZpSJj2GgHTRQBaAhHQKNIGIRAbAF1fZQoaAZHQHBMuBg/keZoB0vmaAhHQKNIQCA+Y+l1fZQoaAZHQHJaLCm/FitoB0vwaAhHQKNI9wqiGnJ1fZQoaAZHQHJrtAX2ugZoB0vUaAhHQKNJII55qud1fZQoaAZHQHHhQVCXyAhoB0vMaAhHQKNJOz544ZN1fZQoaAZHQHIruLm6oVFoB0v1aAhHQKNJPXoTwlV1fZQoaAZHQHBECzTnaFpoB00WAWgIR0CjSZO14Pf9dX2UKGgGR0BwjcKtxMnJaAdL2mgIR0CjSZmWMS9NdX2UKGgGR0BwjXwgDA8CaAdL4WgIR0CjSaPnSv1UdX2UKGgGR0Bx7VWp6yB1aAdL1WgIR0CjSaMuWa+fdX2UKGgGR0Buy/zg/C66aAdL1WgIR0CjSrbiyY5UdX2UKGgGR0BwqOgWac7RaAdL1GgIR0CjSty8rZrYdX2UKGgGR0ByljyCnP3SaAdLxmgIR0CjSvQrtmcwdX2UKGgGR0Bw48cebNKRaAdNAgFoCEdAo0s6eAd4mnV9lChoBkdAcaXdp7CzkmgHS/loCEdAo0tIjGDL83V9lChoBkdAcr8MCtA9m2gHS+VoCEdAo0uItapxWHV9lChoBkdAbxbYSQHRkWgHTRIBaAhHQKNLtlr/Khd1fZQoaAZHQHFPOKGcnVpoB0vZaAhHQKNLv/d69kB1fZQoaAZHQHHY1b/wRXhoB0vVaAhHQKNL0so2GZh1fZQoaAZHQHN9U7nxJ/ZoB0vsaAhHQKNMG0x/NJR1fZQoaAZHQFCNSUkfLcNoB0tlaAhHQKNMQzi0fHR1fZQoaAZHQHH6L9ETg2toB0veaAhHQKNMU7wrlNl1fZQoaAZHQG/ckYO2AoZoB0vlaAhHQKNMYgQHzH11fZQoaAZHQHGd6W1MM7VoB0v0aAhHQKNMoP3BYV91fZQoaAZHQHFGBpUPxx1oB00JAWgIR0CjTN7nX/YKdX2UKGgGR0BtJA5Lh73PaAdL5WgIR0CjTZQTdtVJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1520, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 420, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 420, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2d842aa1baaa2747d9f470398914be23f86297f966e23f22743aafda24cd895
|
3 |
+
size 147964
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a6f64c409d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a6f64c40a60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a6f64c40af0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a6f64c40b80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a6f64c40c10>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a6f64c40ca0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a6f64c40d30>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a6f64c40dc0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a6f64c40e50>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a6f64c40ee0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a6f64c40f70>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a6f64c41000>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a6f64dd5f80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2560000,
|
25 |
+
"_total_timesteps": 10000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1719203586047813842,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI3rpL17cI26zWLEtA40e7AQOjG7Ig2nMwAAAAAAAIA/c2mOvcPpG7psBqu8MVJOMZBlzztmr7mzAACAPwAAgD/AGIc9A2C/P5Znxz55vws9yjwwvUT8Rz0AAAAAAAAAAIDeHT02uCC8k1DMu3GWgrzMgoK9bLNHvgAAgD8AAIA/IDIiPmlWJz6NIeG8IxmJvrq0BT3eeq28AAAAAAAAAABmbuw8VBeNPjYkJjyxS6S+QXsWPRPl07sAAAAAAAAAAABPt7w07Uc+oMBCPWUekr4pezc9utn+OgAAAAAAAAAA2jj+PcOGM7wyK7m9yYTyvXIK3rxe4ka9AACAPwAAgD9be9S+BVXjPoW3Rz4/8v2+zxSTvp1BWD4AAAAAAAAAAGY91D2upcu6lVZtvG9ClDxpisq7MwyAPQAAgD8AAIA/zTgwPgPBSbwWTLY7SrYCug3TtL1S89W6AAAAAAAAgD/NscI8Tr6JPSvJQL5HrJK+QSvnvd6PL70AAAAAAAAAAObVTz1UIVQ+vV6+PHkypL7MRR09vKw6PAAAAAAAAAAAs0tXvY+WQ7parDY0zn8srn4qlDq4J5qzAACAPwAAgD86qDs+oVa8vDIMtbpsOTA5mzMovhth+jkAAIA/AACAP8CgwT0Nc0A/bgXBPeO39r7AZc89q39hPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": 0.74464,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV8gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHC5KEJ0GNeMAWyUS+KMAXSUR0CjNfxZdOZcdX2UKGgGR0BwECL0jC53aAdL4mgIR0CjNhjOkcjrdX2UKGgGR0BARw9A5aNdaAdLs2gIR0CjNiXOnl4kdX2UKGgGR0B0CcXsPatcaAdLx2gIR0CjNoGXgLqmdX2UKGgGR0ByOXP/rB0qaAdL6WgIR0CjNqexfOUudX2UKGgGR0BxkJ4SpR4yaAdL6mgIR0CjNsQBo24vdX2UKGgGR0Bxj4rJ8v25aAdL3GgIR0CjN3TW5H3DdX2UKGgGR0BxUVBX0XgtaAdL2GgIR0CjOBE+xGDudX2UKGgGR0Bxund56dDqaAdL2GgIR0CjOGtDc/MXdX2UKGgGR0ByzPCl7+kyaAdLxGgIR0CjOMl98Z1ndX2UKGgGR0BwhDasZHd5aAdLxWgIR0CjOOOwHJLedX2UKGgGR0BwqWeEqUeNaAdL6GgIR0CjOOoSDh99dX2UKGgGR0ByAuttALRbaAdL2GgIR0CjOPVoYekpdX2UKGgGR0BCkQf6oESvaAdLqmgIR0CjOVOEdvKmdX2UKGgGR0BxaKKAJ9iMaAdLv2gIR0CjOVwbEP1+dX2UKGgGR0Bx1Wjj7yhBaAdL32gIR0CjOV7edkJ8dX2UKGgGR0BxSuvPkaMraAdL+mgIR0CjOcx28qWkdX2UKGgGR0Bk01TDO1OTaAdN6ANoCEdAoznhTyauwHV9lChoBkdAcCKvysjmjmgHS95oCEdAoznwD3dsSHV9lChoBkdAcVWL1VYISmgHTbEBaAhHQKM7i4EwFkh1fZQoaAZHQHFYzXvphWpoB0vtaAhHQKM7i5ksjFB1fZQoaAZHQHGKImgJ1JVoB0vYaAhHQKM70it7rs11fZQoaAZHQHAWp84PwuxoB0vdaAhHQKM8p5kbxVh1fZQoaAZHQHB9jb349HNoB0v6aAhHQKM8pfsNUfh1fZQoaAZHQHC+hP9DQZ5oB0vjaAhHQKM8ue18b711fZQoaAZHQHJLKn3ta6loB0v1aAhHQKM86Rr8BMl1fZQoaAZHQHCOu2JBPbhoB0vbaAhHQKM9FSQ5myx1fZQoaAZHQHC+wwGnn+1oB0vpaAhHQKM9SSV4X411fZQoaAZHQHOPHXI2fkFoB0vHaAhHQKM9YoDPnjh1fZQoaAZHQHEXiyMUAT9oB00QAWgIR0CjPW7dadMCdX2UKGgGR0BwQIEt/WlNaAdL3mgIR0CjPZA1FYuCdX2UKGgGR0BxIN6cAimmaAdNBgFoCEdAoz2o4sEq2HV9lChoBkdAcOBjZ+QU6GgHTQIBaAhHQKM+TtAs0551fZQoaAZHQGM9uIhyKeloB03oA2gIR0CjPsEdFOO9dX2UKGgGR0Bt19WfbsWwaAdL12gIR0CjPvApjMFEdX2UKGgGR0BwKLeBQN1AaAdL6GgIR0CjPzrk8zRAdX2UKGgGR0Bx1sczZYgaaAdNAgFoCEdAo0ASv3ai9XV9lChoBkdAcKgEbHZK4GgHS9NoCEdAo0BeYnfEXXV9lChoBkdAcC2ha1TisGgHS+JoCEdAo0CSPdVNpXV9lChoBkdAc29PnB+F12gHS89oCEdAo0DHPcBU73V9lChoBkdAcAOUpNKywGgHS+NoCEdAo0DuP3i71HV9lChoBkdAbrlJaq0dBGgHS/1oCEdAo0Edc4YJmnV9lChoBkdAbsvNM495hWgHS+NoCEdAo0FwSzw+dXV9lChoBkdAcPp6O5rgwWgHS9poCEdAo0GfD1oQF3V9lChoBkdAcAQ7tiQT22gHS9NoCEdAo0GfKyOaOXV9lChoBkdAb8FZyuIRAmgHS/BoCEdAo0HPgccU/XV9lChoBkdAb7tM9r4332gHTRgBaAhHQKNCjbItDlZ1fZQoaAZHQHHHkXtShrZoB0vzaAhHQKNDh7N0NjN1fZQoaAZHQHJ1r9l2/ztoB0veaAhHQKNDklOXVsl1fZQoaAZHQEfaiTMaCMBoB0usaAhHQKND3yLhrFh1fZQoaAZHQHGYOA7PppxoB0vjaAhHQKND/QdjoZB1fZQoaAZHQHHtaEeyRjloB0v5aAhHQKNEDBBRhtt1fZQoaAZHQG/pkuHvc8FoB0vFaAhHQKNEeeuFHrh1fZQoaAZHQG9ZR6Ww/xFoB0vXaAhHQKNEloV2zOZ1fZQoaAZHQF9Od2xIJ7doB03oA2gIR0CjRLWdd3SsdX2UKGgGR0BJr9qUNayKaAdLvWgIR0CjRO163RXwdX2UKGgGR0BxyA6tDD0laAdL42gIR0CjRQ6be/HpdX2UKGgGR0BxZ8vN/vv0aAdL32gIR0CjRR8jzI3jdX2UKGgGR0Bv/KVUuL75aAdL9GgIR0CjRSlbeMyadX2UKGgGR0BAdoEjgQ6IaAdLuWgIR0CjRZRqXWvsdX2UKGgGR0Bw/Dn1WbPQaAdL8mgIR0CjRZ4e1a4ddX2UKGgGR0BxR+/L1VYIaAdNAQFoCEdAo0XLNKRMe3V9lChoBkdAb3w/CZWq+GgHS/toCEdAo0XZV+7UX3V9lChoBkdAUkoNrj5sTGgHS7FoCEdAo0YTzGxUvXV9lChoBkdAcuroM8YAKmgHS+poCEdAo0ZCn+AEuHV9lChoBkdAcX+6Tnq3VmgHS99oCEdAo0ZtkUbkwXV9lChoBkdAcFM8bJfYz2gHS9loCEdAo0Z4GB4D93V9lChoBkdAcdazFMqSYGgHTQEBaAhHQKNGjnanJkp1fZQoaAZHQHIhnrMTviNoB0vHaAhHQKNGsUwi7kJ1fZQoaAZHQG4vY2bXpW5oB00KAWgIR0CjR5zKDCgsdX2UKGgGR0Bu4twLmZE2aAdNBgFoCEdAo0ewRAbADnV9lChoBkdAcTcr8zhxYWgHS+9oCEdAo0fJW912aHV9lChoBkdAbzOnTiKiwmgHS+5oCEdAo0fYKneiz3V9lChoBkdAb9Hr4WUKRmgHS+1oCEdAo0fhwS8J2XV9lChoBkdAcdxZpSJj2GgHTRQBaAhHQKNIGIRAbAF1fZQoaAZHQHBMuBg/keZoB0vmaAhHQKNIQCA+Y+l1fZQoaAZHQHJaLCm/FitoB0vwaAhHQKNI9wqiGnJ1fZQoaAZHQHJrtAX2ugZoB0vUaAhHQKNJII55qud1fZQoaAZHQHHhQVCXyAhoB0vMaAhHQKNJOz544ZN1fZQoaAZHQHIruLm6oVFoB0v1aAhHQKNJPXoTwlV1fZQoaAZHQHBECzTnaFpoB00WAWgIR0CjSZO14Pf9dX2UKGgGR0BwjcKtxMnJaAdL2mgIR0CjSZmWMS9NdX2UKGgGR0BwjXwgDA8CaAdL4WgIR0CjSaPnSv1UdX2UKGgGR0Bx7VWp6yB1aAdL1WgIR0CjSaMuWa+fdX2UKGgGR0Buy/zg/C66aAdL1WgIR0CjSrbiyY5UdX2UKGgGR0BwqOgWac7RaAdL1GgIR0CjSty8rZrYdX2UKGgGR0ByljyCnP3SaAdLxmgIR0CjSvQrtmcwdX2UKGgGR0Bw48cebNKRaAdNAgFoCEdAo0s6eAd4mnV9lChoBkdAcaXdp7CzkmgHS/loCEdAo0tIjGDL83V9lChoBkdAcr8MCtA9m2gHS+VoCEdAo0uItapxWHV9lChoBkdAbxbYSQHRkWgHTRIBaAhHQKNLtlr/Khd1fZQoaAZHQHFPOKGcnVpoB0vZaAhHQKNLv/d69kB1fZQoaAZHQHHY1b/wRXhoB0vVaAhHQKNL0so2GZh1fZQoaAZHQHN9U7nxJ/ZoB0vsaAhHQKNMG0x/NJR1fZQoaAZHQFCNSUkfLcNoB0tlaAhHQKNMQzi0fHR1fZQoaAZHQHH6L9ETg2toB0veaAhHQKNMU7wrlNl1fZQoaAZHQG/ckYO2AoZoB0vlaAhHQKNMYgQHzH11fZQoaAZHQHGd6W1MM7VoB0v0aAhHQKNMoP3BYV91fZQoaAZHQHFGBpUPxx1oB00JAWgIR0CjTN7nX/YKdX2UKGgGR0BtJA5Lh73PaAdL5WgIR0CjTZQTdtVJdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 1520,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 420,
|
81 |
+
"gamma": 0.995,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 420,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2586e269e6b3feaf814ed9f46296b98b2443f3333a6ce4553e580fbd7e870b19
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53fe0f20039d9151ef50523293374da80682da0ef60337f9d3effabbb2aecb87
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.3.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (180 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 276.2683602, "std_reward": 22.828117036085402, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-24T05:16:26.646411"}
|