File size: 1,446 Bytes
8194a13
a22ec12
260cffa
8194a13
9ea9291
260cffa
8194a13
735ad87
260cffa
 
9663547
89d3c69
9663547
8194a13
 
260cffa
 
 
 
8869d28
260cffa
 
8194a13
260cffa
8869d28
260cffa
 
8194a13
 
 
 
260cffa
 
 
 
 
8194a13
 
 
 
 
 
260cffa
 
 
8869d28
260cffa
 
8194a13
 
260cffa
 
8869d28
260cffa
8194a13
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
<h1 style="border-bottom: 2px solid black; font-size: 100px;" align="center"> SwinUNETR </h1> 

_Trained by Margerie Huet Dastarac ._ <br> 
_Training date: November 2023 ._ 

## 1. Task Description 
Segmentation of the body on the CT scan on a dataset of 60 oropharyngeal patients. This model can be used to clean CT scans by setting voxels value outside of the body contour to air, a typical preprocessing step for other networks. 

## 2. Model 
### 2.1. Architecture 

<img width="100%" src="https://cdn-uploads.huggingface.co/production/uploads/65c9dbefd6cbf9dfed67367e/o59In69BqrxTEoOdSHZLD.png" alt="alternatetext">

_Figure 1: SwinUNETR architecture_ 

### 2.2. Input 
<ul>
<li> CT</li>
</ul>

### 2.3. Output 
<ul>
<li> BODY</li>
</ul>

### 2.4 Training details 
<ul> 
<li> Number of epoch: 300 </li> 
<li> Loss function: Dice loss </li> 
<li> Optimizer: Adam </li> 
<li> Learning Rate: 3e-4 </li> 
<li> Dropout: No </li> 
<li> Patch size in voxels: (128,128,128) </li> 
<li> Data augmentation used: 
<ul>
<li> RandSpatialCropd</li>
<li> RandFlipd axis:0</li>
<li> RandFlipd axis:1</li>
<li> RandFlipd axis:2</li>
<li> NormalizeIntensityd</li>
<li> RandScaleIntensityd factors:0.1 prob:1.0</li>
<li> RandShiftIntensityd, offsets:0.1, prob:1.0</li>
</ul>
</li> 
</ul> 

## 3. Dataset 
<ul> 
<li> Location: Head and neck, oropharynx </li> 
<li> Training set size: 60 </li> 
<li> Resolution in mm: 3x3x3 </li> 
</ul> 

## Performance 
+ TBD