File size: 15,361 Bytes
5e2c32d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import pydicom
import sys
import os
import numpy as np
import nibabel as nib
import scipy
def convert_ct_dicom_to_nii(dir_dicom, dir_nii, outputname, newvoxelsize=None):
Patients = PatientList() # initialize list of patient data
# search dicom files in the patient data folder, stores all files in the attributes (all CT images, dose file, struct file)
Patients.list_dicom_files(dir_dicom, 1)
patient = Patients.list[0]
patient_name = patient.PatientInfo.PatientName
patient.import_patient_data(newvoxelsize)
CT = patient.CTimages[0]
image_position_patient = CT.ImagePositionPatient
voxelsize = np.array(CT.PixelSpacing)
save_images(dst_dir=os.path.join(dir_nii), voxelsize=voxelsize,
image_position_patient=image_position_patient, image=CT.Image, outputname=outputname)
return CT
def save_images(dst_dir, voxelsize, image_position_patient, image, outputname):
# encode in nii and save at dst_dir
# IMPORTANT I NEED TO CONFIRM THE SIGNS OF THE ENTRIES IN THE AFFINE,
# ALTHOUGH MAYBE AT THE END THE IMPORTANCE IS HOW WE WILL USE THIS DATA ....
# also instead of changing field by field, the pixdim and affine can be encoded
# using the set_sform method --> info here: https://nipy.org/nibabel/nifti_images.html
# IMAGE (CT, MR ...)
image_shape = image.shape
# Separate Conversion from preprocessing
# image = overwrite_ct_threshold(image)
# for Nifti1 header, change for a Nifti2 type of header
image_nii = nib.Nifti1Image(image, affine=np.eye(4))
# Update header fields
image_nii = set_header_info(image_nii, voxelsize, image_position_patient)
# Save nii
nib.save(image_nii, os.path.join(dst_dir, outputname))
# nib.save(image_nii, os.path.join(dst_dir, 'ct.nii.gz'))
# def overwrite_ct_threshold(ct_image, body, artefact=None, contrast=None):
# # Change the HU out of the body to air: -1000
# ct_image[body == 0] = -1000
# if artefact is not None:
# # Change the HU to muscle: 14
# ct_image[artefact == 1] = 14
# if contrast is not None:
# # Change the HU to water: 0 Houndsfield Unit: CT unit
# ct_image[contrast == 1] = 0
# # Threshold above 1560HU
# ct_image[ct_image > 1560] = 1560
# return ct_image
def set_header_info(nii_file, voxelsize, image_position_patient, contours_exist=None):
nii_file.header['pixdim'][1] = voxelsize[0]
nii_file.header['pixdim'][2] = voxelsize[1]
nii_file.header['pixdim'][3] = voxelsize[2]
# affine - voxelsize
nii_file.affine[0][0] = voxelsize[0]
nii_file.affine[1][1] = voxelsize[1]
nii_file.affine[2][2] = voxelsize[2]
# affine - imagecorner
nii_file.affine[0][3] = image_position_patient[0]
nii_file.affine[1][3] = image_position_patient[1]
nii_file.affine[2][3] = image_position_patient[2]
if contours_exist:
nii_file.header.extensions.append(
nib.nifti1.Nifti1Extension(0, bytearray(contours_exist)))
return nii_file
class PatientList:
def __init__(self):
self.list = []
def find_CT_image(self, display_id):
count = -1
for patient_id in range(len(self.list)):
for ct_id in range(len(self.list[patient_id].CTimages)):
if (self.list[patient_id].CTimages[ct_id].isLoaded == 1):
count += 1
if (count == display_id):
break
if (count == display_id):
break
return patient_id, ct_id
def find_dose_image(self, display_id):
count = -1
for patient_id in range(len(self.list)):
for dose_id in range(len(self.list[patient_id].RTdoses)):
if (self.list[patient_id].RTdoses[dose_id].isLoaded == 1):
count += 1
if (count == display_id):
break
if (count == display_id):
break
return patient_id, dose_id
def find_contour(self, ROIName):
for patient_id in range(len(self.list)):
for struct_id in range(len(self.list[patient_id].RTstructs)):
if (self.list[patient_id].RTstructs[struct_id].isLoaded == 1):
for contour_id in range(len(self.list[patient_id].RTstructs[struct_id].Contours)):
if (self.list[patient_id].RTstructs[struct_id].Contours[contour_id].ROIName == ROIName):
return patient_id, struct_id, contour_id
def list_dicom_files(self, folder_path, recursive):
file_list = os.listdir(folder_path)
# print("len file_list", len(file_list), "folderpath",folder_path)
for file_name in file_list:
file_path = os.path.join(folder_path, file_name)
# folders
if os.path.isdir(file_path):
if recursive == True:
subfolder_list = self.list_dicom_files(file_path, True)
# join_patient_lists(Patients, subfolder_list)
# files
elif os.path.isfile(file_path):
try:
dcm = pydicom.dcmread(file_path)
except:
print("Invalid Dicom file: " + file_path)
continue
patient_id = next((x for x, val in enumerate(
self.list) if val.PatientInfo.PatientID == dcm.PatientID), -1)
if patient_id == -1:
Patient = PatientData()
Patient.PatientInfo.PatientID = dcm.PatientID
Patient.PatientInfo.PatientName = str(dcm.PatientName)
Patient.PatientInfo.PatientBirthDate = dcm.PatientBirthDate
Patient.PatientInfo.PatientSex = dcm.PatientSex
self.list.append(Patient)
patient_id = len(self.list) - 1
# Dicom CT
if dcm.SOPClassUID == "1.2.840.10008.5.1.4.1.1.2":
ct_id = next((x for x, val in enumerate(
self.list[patient_id].CTimages) if val.SeriesInstanceUID == dcm.SeriesInstanceUID), -1)
if ct_id == -1:
CT = CTimage()
CT.SeriesInstanceUID = dcm.SeriesInstanceUID
CT.SOPClassUID == "1.2.840.10008.5.1.4.1.1.2"
CT.PatientInfo = self.list[patient_id].PatientInfo
CT.StudyInfo = StudyInfo()
CT.StudyInfo.StudyInstanceUID = dcm.StudyInstanceUID
CT.StudyInfo.StudyID = dcm.StudyID
CT.StudyInfo.StudyDate = dcm.StudyDate
CT.StudyInfo.StudyTime = dcm.StudyTime
if (hasattr(dcm, 'SeriesDescription') and dcm.SeriesDescription != ""):
CT.ImgName = dcm.SeriesDescription
else:
CT.ImgName = dcm.SeriesInstanceUID
self.list[patient_id].CTimages.append(CT)
ct_id = len(self.list[patient_id].CTimages) - 1
self.list[patient_id].CTimages[ct_id].DcmFiles.append(
file_path)
else:
print("Unknown SOPClassUID " +
dcm.SOPClassUID + " for file " + file_path)
# other
else:
print("Unknown file type " + file_path)
def print_patient_list(self):
print("")
for patient in self.list:
patient.print_patient_info()
print("")
class PatientData:
def __init__(self):
self.PatientInfo = PatientInfo()
self.CTimages = []
def print_patient_info(self, prefix=""):
print("")
print(prefix + "PatientName: " + self.PatientInfo.PatientName)
print(prefix + "PatientID: " + self.PatientInfo.PatientID)
for ct in self.CTimages:
print("")
ct.print_CT_info(prefix + " ")
def import_patient_data(self, newvoxelsize=None):
# import CT images
for i, ct in enumerate(self.CTimages):
if (ct.isLoaded == 1):
continue
ct.import_Dicom_CT()
# Resample CT images
for i, ct in enumerate(self.CTimages):
ct.resample_CT(newvoxelsize)
class PatientInfo:
def __init__(self):
self.PatientID = ''
self.PatientName = ''
self.PatientBirthDate = ''
self.PatientSex = ''
class StudyInfo:
def __init__(self):
self.StudyInstanceUID = ''
self.StudyID = ''
self.StudyDate = ''
self.StudyTime = ''
class CTimage:
def __init__(self):
self.SeriesInstanceUID = ""
self.PatientInfo = {}
self.StudyInfo = {}
self.FrameOfReferenceUID = ""
self.ImgName = ""
self.SOPClassUID = ""
self.DcmFiles = []
self.isLoaded = 0
def print_CT_info(self, prefix=""):
print(prefix + "CT series: " + self.SeriesInstanceUID)
for ct_slice in self.DcmFiles:
print(prefix + " " + ct_slice)
def resample_CT(self, newvoxelsize):
ct = self.Image
# Rescaling to the newvoxelsize if given in parameter
if newvoxelsize is not None:
source_shape = self.GridSize
voxelsize = self.PixelSpacing
# print("self.ImagePositionPatient",self.ImagePositionPatient, "source_shape",source_shape,"voxelsize",voxelsize)
VoxelX_source = self.ImagePositionPatient[0] + \
np.arange(source_shape[0])*voxelsize[0]
VoxelY_source = self.ImagePositionPatient[1] + \
np.arange(source_shape[1])*voxelsize[1]
VoxelZ_source = self.ImagePositionPatient[2] + \
np.arange(source_shape[2])*voxelsize[2]
target_shape = np.ceil(np.array(source_shape).astype(
float)*np.array(voxelsize).astype(float)/newvoxelsize).astype(int)
VoxelX_target = self.ImagePositionPatient[0] + \
np.arange(target_shape[0])*newvoxelsize[0]
VoxelY_target = self.ImagePositionPatient[1] + \
np.arange(target_shape[1])*newvoxelsize[1]
VoxelZ_target = self.ImagePositionPatient[2] + \
np.arange(target_shape[2])*newvoxelsize[2]
# print("source_shape",source_shape,"target_shape",target_shape)
if (all(source_shape == target_shape) and np.linalg.norm(np.subtract(voxelsize, newvoxelsize) < 0.001)):
print("Image does not need filtering")
else:
# anti-aliasing filter
sigma = [0, 0, 0]
if (newvoxelsize[0] > voxelsize[0]):
sigma[0] = 0.4 * (newvoxelsize[0]/voxelsize[0])
if (newvoxelsize[1] > voxelsize[1]):
sigma[1] = 0.4 * (newvoxelsize[1]/voxelsize[1])
if (newvoxelsize[2] > voxelsize[2]):
sigma[2] = 0.4 * (newvoxelsize[2]/voxelsize[2])
if (sigma != [0, 0, 0]):
print("Image is filtered before downsampling")
ct = scipy.ndimage.gaussian_filter(ct, sigma)
xi = np.array(np.meshgrid(
VoxelX_target, VoxelY_target, VoxelZ_target))
xi = np.rollaxis(xi, 0, 4)
xi = xi.reshape((xi.size // 3, 3))
# get resized ct
ct = scipy.interpolate.interpn((VoxelX_source, VoxelY_source, VoxelZ_source), ct, xi, method='linear',
fill_value=-1000, bounds_error=False).reshape(target_shape).transpose(1, 0, 2)
self.PixelSpacing = newvoxelsize
self.GridSize = list(ct.shape)
self.NumVoxels = self.GridSize[0] * self.GridSize[1] * self.GridSize[2]
self.Image = ct
# print("self.ImagePositionPatient",self.ImagePositionPatient, "self.GridSize[0]",self.GridSize[0],"self.PixelSpacing",self.PixelSpacing)
self.VoxelX = self.ImagePositionPatient[0] + \
np.arange(self.GridSize[0])*self.PixelSpacing[0]
self.VoxelY = self.ImagePositionPatient[1] + \
np.arange(self.GridSize[1])*self.PixelSpacing[1]
self.VoxelZ = self.ImagePositionPatient[2] + \
np.arange(self.GridSize[2])*self.PixelSpacing[2]
self.isLoaded = 1
def import_Dicom_CT(self):
if (self.isLoaded == 1):
print("Warning: CT serries " +
self.SeriesInstanceUID + " is already loaded")
return
images = []
SOPInstanceUIDs = []
SliceLocation = np.zeros(len(self.DcmFiles), dtype='float')
for i in range(len(self.DcmFiles)):
file_path = self.DcmFiles[i]
dcm = pydicom.dcmread(file_path)
if (hasattr(dcm, 'SliceLocation') and abs(dcm.SliceLocation - dcm.ImagePositionPatient[2]) > 0.001):
print("WARNING: SliceLocation (" + str(dcm.SliceLocation) +
") is different than ImagePositionPatient[2] (" + str(dcm.ImagePositionPatient[2]) + ") for " + file_path)
SliceLocation[i] = float(dcm.ImagePositionPatient[2])
images.append(dcm.pixel_array * dcm.RescaleSlope +
dcm.RescaleIntercept)
SOPInstanceUIDs.append(dcm.SOPInstanceUID)
# sort slices according to their location in order to reconstruct the 3d image
sort_index = np.argsort(SliceLocation)
SliceLocation = SliceLocation[sort_index]
SOPInstanceUIDs = [SOPInstanceUIDs[n] for n in sort_index]
images = [images[n] for n in sort_index]
ct = np.dstack(images).astype("float32")
if ct.shape[0:2] != (dcm.Rows, dcm.Columns):
print("WARNING: GridSize " + str(ct.shape[0:2]) + " different from Dicom Rows (" + str(
dcm.Rows) + ") and Columns (" + str(dcm.Columns) + ")")
MeanSliceDistance = (
SliceLocation[-1] - SliceLocation[0]) / (len(images)-1)
if (abs(MeanSliceDistance - dcm.SliceThickness) > 0.001):
print("WARNING: MeanSliceDistance (" + str(MeanSliceDistance) +
") is different from SliceThickness (" + str(dcm.SliceThickness) + ")")
self.FrameOfReferenceUID = dcm.FrameOfReferenceUID
self.ImagePositionPatient = [float(dcm.ImagePositionPatient[0]), float(
dcm.ImagePositionPatient[1]), SliceLocation[0]]
self.PixelSpacing = [float(dcm.PixelSpacing[0]), float(
dcm.PixelSpacing[1]), MeanSliceDistance]
self.GridSize = list(ct.shape)
self.NumVoxels = self.GridSize[0] * self.GridSize[1] * self.GridSize[2]
self.Image = ct
self.SOPInstanceUIDs = SOPInstanceUIDs
self.VoxelX = self.ImagePositionPatient[0] + \
np.arange(self.GridSize[0])*self.PixelSpacing[0]
self.VoxelY = self.ImagePositionPatient[1] + \
np.arange(self.GridSize[1])*self.PixelSpacing[1]
self.VoxelZ = self.ImagePositionPatient[2] + \
np.arange(self.GridSize[2])*self.PixelSpacing[2]
self.isLoaded = 1
print("Convert CT dicom to nii done")
|