|
import nibabel as nib |
|
import pydicom |
|
import os |
|
import glob |
|
import numpy as np |
|
from copy import deepcopy |
|
from matplotlib.patches import Polygon |
|
import warnings |
|
from scipy.ndimage import find_objects |
|
from scipy.ndimage.morphology import binary_fill_holes |
|
from skimage import measure |
|
from PIL import Image, ImageDraw |
|
import scipy |
|
import datetime |
|
|
|
def convert_nii_to_dicom(dicomctdir, predictedNiiFile, predictedDicomFile, predicted_structures=[], rtstruct_colors=[], refCT = None): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct = RTstruct() |
|
struct.load_from_nii(predictedNiiFile, predicted_structures, rtstruct_colors) |
|
if not struct.Contours[0].Mask_PixelSpacing == refCT.PixelSpacing: |
|
struct.resample_struct(refCT.PixelSpacing) |
|
struct.export_Dicom(refCT, predictedDicomFile) |
|
|
|
|
|
|
|
class RTstruct: |
|
|
|
def __init__(self): |
|
self.SeriesInstanceUID = "" |
|
self.PatientInfo = {} |
|
self.StudyInfo = {} |
|
self.CT_SeriesInstanceUID = "" |
|
self.DcmFile = "" |
|
self.isLoaded = 0 |
|
self.Contours = [] |
|
self.NumContours = 0 |
|
|
|
|
|
def print_struct_info(self, prefix=""): |
|
print(prefix + "Struct: " + self.SeriesInstanceUID) |
|
print(prefix + " " + self.DcmFile) |
|
|
|
|
|
def print_ROINames(self): |
|
print("RT Struct UID: " + self.SeriesInstanceUID) |
|
count = -1 |
|
for contour in self.Contours: |
|
count += 1 |
|
print(' [' + str(count) + '] ' + contour.ROIName) |
|
|
|
def resample_struct(self, newvoxelsize): |
|
|
|
if newvoxelsize is not None: |
|
for i, Contour in enumerate(self.Contours): |
|
source_shape = Contour.Mask_GridSize |
|
voxelsize = Contour.Mask_PixelSpacing |
|
VoxelX_source = Contour.Mask_Offset[0] + np.arange(source_shape[0])*voxelsize[0] |
|
VoxelY_source = Contour.Mask_Offset[1] + np.arange(source_shape[1])*voxelsize[1] |
|
VoxelZ_source = Contour.Mask_Offset[2] + np.arange(source_shape[2])*voxelsize[2] |
|
|
|
target_shape = np.ceil(np.array(source_shape).astype(float)*np.array(voxelsize).astype(float)/newvoxelsize).astype(int) |
|
VoxelX_target = Contour.Mask_Offset[0] + np.arange(target_shape[0])*newvoxelsize[0] |
|
VoxelY_target = Contour.Mask_Offset[1] + np.arange(target_shape[1])*newvoxelsize[1] |
|
VoxelZ_target = Contour.Mask_Offset[2] + np.arange(target_shape[2])*newvoxelsize[2] |
|
|
|
contour = Contour.Mask |
|
|
|
if(all(source_shape == target_shape) and np.linalg.norm(np.subtract(voxelsize, newvoxelsize) < 0.001)): |
|
print("! Image does not need filtering") |
|
else: |
|
|
|
sigma = [0, 0, 0] |
|
if(newvoxelsize[0] > voxelsize[0]): sigma[0] = 0.4 * (newvoxelsize[0]/voxelsize[0]) |
|
if(newvoxelsize[1] > voxelsize[1]): sigma[1] = 0.4 * (newvoxelsize[1]/voxelsize[1]) |
|
if(newvoxelsize[2] > voxelsize[2]): sigma[2] = 0.4 * (newvoxelsize[2]/voxelsize[2]) |
|
|
|
if(sigma != [0, 0, 0]): |
|
contour = scipy.ndimage.gaussian_filter(contour.astype(float), sigma) |
|
|
|
contour[np.where(contour>=0.5)] = 1 |
|
contour[np.where(contour<0.5)] = 0 |
|
|
|
xi = np.array(np.meshgrid(VoxelX_target, VoxelY_target, VoxelZ_target)) |
|
xi = np.rollaxis(xi, 0, 4) |
|
xi = xi.reshape((xi.size // 3, 3)) |
|
|
|
|
|
contour = scipy.interpolate.interpn((VoxelX_source,VoxelY_source,VoxelZ_source), contour, xi, method='nearest', fill_value=0, bounds_error=False).astype(bool).reshape(target_shape).transpose(1,0,2) |
|
Contour.Mask_PixelSpacing = newvoxelsize |
|
Contour.Mask_GridSize = list(contour.shape) |
|
Contour.NumVoxels = Contour.Mask_GridSize[0] * Contour.Mask_GridSize[1] * Contour.Mask_GridSize[2] |
|
Contour.Mask = contour |
|
self.Contours[i]=Contour |
|
|
|
|
|
def import_Dicom_struct(self, CT): |
|
if(self.isLoaded == 1): |
|
print("Warning: RTstruct " + self.SeriesInstanceUID + " is already loaded") |
|
return |
|
dcm = pydicom.dcmread(self.DcmFile) |
|
|
|
self.CT_SeriesInstanceUID = CT.SeriesInstanceUID |
|
|
|
for dcm_struct in dcm.StructureSetROISequence: |
|
ReferencedROI_id = next((x for x, val in enumerate(dcm.ROIContourSequence) if val.ReferencedROINumber == dcm_struct.ROINumber), -1) |
|
dcm_contour = dcm.ROIContourSequence[ReferencedROI_id] |
|
|
|
Contour = ROIcontour() |
|
Contour.SeriesInstanceUID = self.SeriesInstanceUID |
|
Contour.ROIName = dcm_struct.ROIName |
|
Contour.ROIDisplayColor = dcm_contour.ROIDisplayColor |
|
|
|
|
|
|
|
Contour.Mask = np.zeros((CT.GridSize[0], CT.GridSize[1], CT.GridSize[2]), dtype=np.bool) |
|
Contour.Mask_GridSize = CT.GridSize |
|
Contour.Mask_PixelSpacing = CT.PixelSpacing |
|
Contour.Mask_Offset = CT.ImagePositionPatient |
|
Contour.Mask_NumVoxels = CT.NumVoxels |
|
Contour.ContourMask = np.zeros((CT.GridSize[0], CT.GridSize[1], CT.GridSize[2]), dtype=np.bool) |
|
|
|
SOPInstanceUID_match = 1 |
|
|
|
if not hasattr(dcm_contour, 'ContourSequence'): |
|
print("This structure has no attribute ContourSequence. Skipping ...") |
|
continue |
|
|
|
for dcm_slice in dcm_contour.ContourSequence: |
|
Slice = {} |
|
|
|
|
|
Slice["XY_dcm"] = list(zip( np.array(dcm_slice.ContourData[0::3]), np.array(dcm_slice.ContourData[1::3]) )) |
|
Slice["Z_dcm"] = float(dcm_slice.ContourData[2]) |
|
|
|
|
|
Slice["XY_img"] = list(zip( ((np.array(dcm_slice.ContourData[0::3]) - CT.ImagePositionPatient[0]) / CT.PixelSpacing[0]), ((np.array(dcm_slice.ContourData[1::3]) - CT.ImagePositionPatient[1]) / CT.PixelSpacing[1]) )) |
|
Slice["Z_img"] = (Slice["Z_dcm"] - CT.ImagePositionPatient[2]) / CT.PixelSpacing[2] |
|
Slice["Slice_id"] = int(round(Slice["Z_img"])) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
img = Image.new('L', (CT.GridSize[0], CT.GridSize[1]), 0) |
|
if(len(Slice["XY_img"]) > 1): ImageDraw.Draw(img).polygon(Slice["XY_img"], outline=1, fill=1) |
|
mask = np.array(img) |
|
Contour.Mask[:,:,Slice["Slice_id"]] = np.logical_or(Contour.Mask[:,:,Slice["Slice_id"]], mask) |
|
|
|
|
|
img = Image.new('L', (CT.GridSize[0], CT.GridSize[1]), 0) |
|
if(len(Slice["XY_img"]) > 1): ImageDraw.Draw(img).polygon(Slice["XY_img"], outline=1, fill=0) |
|
mask = np.array(img) |
|
Contour.ContourMask[:,:,Slice["Slice_id"]] = np.logical_or(Contour.ContourMask[:,:,Slice["Slice_id"]], mask) |
|
|
|
Contour.ContourSequence.append(Slice) |
|
|
|
|
|
if(hasattr(dcm_slice, 'ContourImageSequence') and CT.SOPInstanceUIDs[Slice["Slice_id"]] != dcm_slice.ContourImageSequence[0].ReferencedSOPInstanceUID): |
|
SOPInstanceUID_match = 0 |
|
|
|
if SOPInstanceUID_match != 1: |
|
print("WARNING: some SOPInstanceUIDs don't match during importation of " + Contour.ROIName + " contour on CT image") |
|
|
|
self.Contours.append(Contour) |
|
self.NumContours += 1 |
|
|
|
self.isLoaded = 1 |
|
|
|
def load_from_nii(self, struct_nii_path, rtstruct_labels, rtstruct_colors): |
|
|
|
|
|
struct_nib = nib.load(struct_nii_path) |
|
struct_data = struct_nib.get_fdata() |
|
|
|
|
|
if len(struct_nib.header.extensions)==0: |
|
contoursexist = [] |
|
else: |
|
contoursexist = list(struct_nib.header.extensions[0].get_content()) |
|
|
|
|
|
|
|
|
|
|
|
roinumbers = list(np.arange(np.floor(np.log2(np.max(struct_data))).astype(int)+1)) |
|
nb_rois_in_struct = len(roinumbers) |
|
|
|
|
|
if len(contoursexist)!=0 and (not len(rtstruct_labels) == len(contoursexist) == nb_rois_in_struct): |
|
|
|
raise Warning("The number or struct labels, contoursexist, and estimated masks in struct.nii.gz is not the same. Taking len(contoursexist) as number of rois") |
|
self.NumContours = len(contoursexist) |
|
else: |
|
self.NumContours = nb_rois_in_struct |
|
|
|
|
|
|
|
for c in range(self.NumContours): |
|
|
|
Contour = ROIcontour() |
|
Contour.SeriesInstanceUID = self.SeriesInstanceUID |
|
Contour.ROIName = rtstruct_labels[c] |
|
if rtstruct_colors[c] == None: |
|
Contour.ROIDisplayColor = [0, 0, 255] |
|
else: |
|
Contour.ROIDisplayColor = rtstruct_colors[c] |
|
if len(contoursexist)!=0 and contoursexist[c] == 0: |
|
Contour.Mask = np.zeros((struct_nib.header['dim'][1], struct_nib.header['dim'][2], struct_nib.header['dim'][3]), dtype=np.bool_) |
|
else: |
|
Contour.Mask = np.bitwise_and(struct_data.astype(int), 2 ** c).astype(bool) |
|
|
|
Contour.Mask_GridSize = [struct_nib.header['dim'][1], struct_nib.header['dim'][2], struct_nib.header['dim'][3]] |
|
Contour.Mask_PixelSpacing = [struct_nib.header['pixdim'][1], struct_nib.header['pixdim'][2], struct_nib.header['pixdim'][3]] |
|
Contour.Mask_Offset = [struct_nib.header['qoffset_x'], struct_nib.header['qoffset_y'], struct_nib.header['qoffset_z']] |
|
Contour.Mask_NumVoxels = struct_nib.header['dim'][1].astype(int) * struct_nib.header['dim'][2].astype(int) * struct_nib.header['dim'][3].astype(int) |
|
|
|
|
|
|
|
self.Contours.append(Contour) |
|
|
|
|
|
def export_Dicom(self, refCT, outputFile): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SOPInstanceUID = pydicom.uid.generate_uid() |
|
|
|
|
|
meta = pydicom.dataset.FileMetaDataset() |
|
meta.MediaStorageSOPClassUID = '1.2.840.10008.5.1.4.1.1.481.3' |
|
meta.MediaStorageSOPInstanceUID = SOPInstanceUID |
|
|
|
meta.ImplementationClassUID = '1.2.250.1.59.3.0.3.5.0' |
|
meta.TransferSyntaxUID = '1.2.840.10008.1.2' |
|
meta.FileMetaInformationGroupLength = 188 |
|
|
|
|
|
|
|
|
|
ds = pydicom.dataset.FileDataset(outputFile, {}, file_meta=meta, preamble=b"\0" * 128) |
|
|
|
|
|
ds.PatientName = refCT.PatientInfo.PatientName |
|
ds.PatientID = refCT.PatientInfo.PatientID |
|
ds.PatientBirthDate = refCT.PatientInfo.PatientBirthDate |
|
ds.PatientSex = refCT.PatientInfo.PatientSex |
|
|
|
|
|
dt = datetime.datetime.now() |
|
ds.StudyDate = dt.strftime('%Y%m%d') |
|
ds.StudyTime = dt.strftime('%H%M%S.%f') |
|
ds.AccessionNumber = '1' |
|
ds.ReferringPhysicianName = 'NA' |
|
ds.StudyInstanceUID = refCT.StudyInfo.StudyInstanceUID |
|
ds.StudyID = refCT.StudyInfo.StudyID |
|
|
|
|
|
|
|
|
|
ds.Modality = 'RTSTRUCT' |
|
ds.SeriesDescription = 'AI-predicted' + dt.strftime('%Y%m%d') + dt.strftime('%H%M%S.%f') |
|
ds.OperatorsName = 'MIRO AI team' |
|
ds.SeriesInstanceUID = pydicom.uid.generate_uid() |
|
ds.SeriesNumber = '1' |
|
|
|
|
|
ds.Manufacturer = 'MIRO lab' |
|
|
|
|
|
|
|
|
|
|
|
ds.FrameOfReferenceUID = refCT.FrameOfReferenceUID |
|
ds.PositionReferenceIndicator = '' |
|
|
|
|
|
ds.StructureSetLabel = 'AI predicted' |
|
|
|
|
|
ds.StructureSetDate = dt.strftime('%Y%m%d') |
|
ds.StructureSetTime = dt.strftime('%H%M%S.%f') |
|
ds.ReferencedFrameOfReferenceSequence = pydicom.Sequence() |
|
|
|
dssr = pydicom.Dataset() |
|
dssr.FrameOfReferenceUID = refCT.FrameOfReferenceUID |
|
dssr.RTReferencedStudySequence = pydicom.Sequence() |
|
|
|
dssr_refStudy = pydicom.Dataset() |
|
dssr_refStudy.ReferencedSOPClassUID = '1.2.840.10008.3.1.2.3.1' |
|
dssr_refStudy.ReferencedSOPInstanceUID = refCT.StudyInfo.StudyInstanceUID |
|
dssr_refStudy.RTReferencedSeriesSequence = pydicom.Sequence() |
|
|
|
dssr_refStudy_series = pydicom.Dataset() |
|
dssr_refStudy_series.SeriesInstanceUID = refCT.SeriesInstanceUID |
|
dssr_refStudy_series.ContourImageSequence = pydicom.Sequence() |
|
|
|
for slc in range(len(refCT.SOPInstanceUIDs)): |
|
dssr_refStudy_series_slc = pydicom.Dataset() |
|
dssr_refStudy_series_slc.ReferencedSOPClassUID = refCT.SOPClassUID |
|
dssr_refStudy_series_slc.ReferencedSOPInstanceUID = refCT.SOPInstanceUIDs[slc] |
|
|
|
dssr_refStudy_series.ContourImageSequence.append(dssr_refStudy_series_slc) |
|
|
|
|
|
dssr_refStudy.RTReferencedSeriesSequence.append(dssr_refStudy_series) |
|
|
|
dssr.RTReferencedStudySequence.append(dssr_refStudy) |
|
|
|
ds.ReferencedFrameOfReferenceSequence.append(dssr) |
|
|
|
ds.StructureSetROISequence = pydicom.Sequence() |
|
|
|
for iroi in range(self.NumContours): |
|
|
|
dssr = pydicom.Dataset() |
|
dssr.ROINumber = iroi + 1 |
|
dssr.ReferencedFrameOfReferenceUID = ds.FrameOfReferenceUID |
|
dssr.ROIName = self.Contours[iroi].ROIName |
|
|
|
dssr.ROIGenerationAlgorithm = 'AUTOMATIC' |
|
|
|
ds.StructureSetROISequence.append(dssr) |
|
|
|
|
|
del dssr |
|
|
|
|
|
|
|
|
|
ds.ROIContourSequence = pydicom.Sequence() |
|
|
|
for iroi in range(self.NumContours): |
|
|
|
dssr = pydicom.Dataset() |
|
dssr.ROIDisplayColor = self.Contours[iroi].ROIDisplayColor |
|
dssr.ReferencedROINumber = iroi + 1 |
|
dssr.ContourSequence = pydicom.Sequence() |
|
|
|
polygonMeshList = self.Contours[iroi].getROIContour() |
|
|
|
z_coords = list(np.arange(self.Contours[iroi].Mask_Offset[2],self.Contours[iroi].Mask_Offset[2]+self.Contours[iroi].Mask_GridSize[2]*self.Contours[iroi].Mask_PixelSpacing[2], self.Contours[iroi].Mask_PixelSpacing[2])) |
|
|
|
for polygon in polygonMeshList: |
|
|
|
|
|
dssr_slc = pydicom.Dataset() |
|
dssr_slc.ContourGeometricType = 'CLOSED_PLANAR' |
|
|
|
|
|
|
|
dssr_slc.NumberOfContourPoints = len(polygon[0::3]) |
|
|
|
dssr_slc.ContourData = polygon |
|
|
|
|
|
polygon_z = polygon[2] |
|
slc = z_coords.index(polygon_z) |
|
|
|
dssr_slc.ContourImageSequence = pydicom.Sequence() |
|
|
|
dssr_slc_ref = pydicom.Dataset() |
|
dssr_slc_ref.ReferencedSOPClassUID = refCT.SOPClassUID |
|
dssr_slc_ref.ReferencedSOPInstanceUID = refCT.SOPInstanceUIDs[slc] |
|
dssr_slc.ContourImageSequence.append(dssr_slc_ref) |
|
|
|
|
|
dssr.ContourSequence.append(dssr_slc) |
|
|
|
|
|
ds.ROIContourSequence.append(dssr) |
|
|
|
|
|
ds.RTROIObservationsSequence = pydicom.Sequence() |
|
|
|
for iroi in range(self.NumContours): |
|
|
|
dssr = pydicom.Dataset() |
|
dssr.ObservationNumber = iroi + 1 |
|
dssr.ReferencedROINumber = iroi + 1 |
|
dssr.ROIObservationLabel = self.Contours[iroi].ROIName |
|
dssr.RTROIInterpretedType = 'ORGAN' |
|
|
|
dssr.ROIInterpreter = '' |
|
|
|
ds.RTROIObservationsSequence.append(dssr) |
|
|
|
|
|
ds.ApprovalStatus = 'UNAPPROVED' |
|
|
|
|
|
|
|
|
|
|
|
|
|
ds.SpecificCharacterSet = 'ISO_IR 100' |
|
|
|
|
|
ds.SOPClassUID = '1.2.840.10008.5.1.4.1.1.481.3' |
|
ds.SOPInstanceUID = SOPInstanceUID |
|
|
|
|
|
|
|
print("Export dicom RTSTRUCT: " + outputFile) |
|
ds.save_as(outputFile) |
|
|
|
|
|
|
|
|
|
class ROIcontour: |
|
|
|
def __init__(self): |
|
self.SeriesInstanceUID = "" |
|
self.ROIName = "" |
|
self.ContourSequence = [] |
|
|
|
def getROIContour(self): |
|
|
|
try: |
|
from skimage.measure import label, find_contours |
|
from skimage.segmentation import find_boundaries |
|
except: |
|
print('Module skimage (scikit-image) not installed, ROIMask cannot be converted to ROIContour') |
|
return 0 |
|
|
|
polygonMeshList = [] |
|
for zSlice in range(self.Mask.shape[2]): |
|
|
|
labeledImg, numberOfLabel = label(self.Mask[:, :, zSlice], return_num=True) |
|
|
|
for i in range(1, numberOfLabel + 1): |
|
|
|
singleLabelImg = labeledImg == i |
|
contours = find_contours(singleLabelImg.astype(np.uint8), level=0.6) |
|
|
|
if len(contours) > 0: |
|
|
|
if len(contours) == 2: |
|
|
|
|
|
contours2 = find_contours(singleLabelImg.astype(np.uint8), level=0.4) |
|
|
|
interiorContour = contours2[1] |
|
polygonMesh = [] |
|
for point in interiorContour: |
|
|
|
|
|
|
|
xCoord = np.round(point[1]) * self.Mask_PixelSpacing[0] + self.Mask_Offset[0] |
|
yCoord = np.round(point[0]) * self.Mask_PixelSpacing[1] + self.Mask_Offset[1] |
|
zCoord = zSlice * self.Mask_PixelSpacing[2] + self.Mask_Offset[2] |
|
|
|
|
|
|
|
polygonMesh.append(xCoord) |
|
polygonMesh.append(yCoord) |
|
polygonMesh.append(zCoord) |
|
|
|
polygonMeshList.append(polygonMesh) |
|
|
|
contour = contours[0] |
|
|
|
polygonMesh = [] |
|
for point in contour: |
|
|
|
|
|
|
|
xCoord = np.round(point[1]) * self.Mask_PixelSpacing[0] + self.Mask_Offset[0] |
|
yCoord = np.round(point[0]) * self.Mask_PixelSpacing[1] + self.Mask_Offset[1] |
|
zCoord = zSlice * self.Mask_PixelSpacing[2] + self.Mask_Offset[2] |
|
|
|
polygonMesh.append(xCoord) |
|
polygonMesh.append(yCoord) |
|
|
|
|
|
polygonMesh.append(zCoord) |
|
|
|
polygonMeshList.append(polygonMesh) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return polygonMeshList |
|
|