GinnM commited on
Commit
6ca6d3c
1 Parent(s): 3e072b7

Upload config

Browse files
Files changed (3) hide show
  1. README.md +199 -0
  2. config.json +39 -0
  3. configuration_prosst.py +71 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attention_probs_dropout_prob": 0.1,
3
+ "auto_map": {
4
+ "AutoConfig": "configuration_prosst.ProSSTConfig"
5
+ },
6
+ "hidden_act": "gelu",
7
+ "hidden_dropout_prob": 0.1,
8
+ "hidden_size": 768,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 3072,
11
+ "layer_norm_eps": 1e-07,
12
+ "mask_token_id": 24,
13
+ "max_position_embeddings": -1,
14
+ "max_relative_positions": 1024,
15
+ "mlm_probability": 0.15,
16
+ "model_type": "ProSST",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "pooler_dropout": 0.1,
21
+ "pooler_hidden_act": "gelu",
22
+ "pooler_hidden_size": 768,
23
+ "pooling_head": "mean",
24
+ "pos_att_type": [
25
+ "aa2pos",
26
+ "pos2aa",
27
+ "aa2ss",
28
+ "ss2aa"
29
+ ],
30
+ "position_biased_input": false,
31
+ "position_embedding_type": "relative",
32
+ "relative_attention": true,
33
+ "scale_hidden": 1,
34
+ "ss_vocab_size": 515,
35
+ "token_dropout": true,
36
+ "transformers_version": "4.38.2",
37
+ "type_vocab_size": 0,
38
+ "vocab_size": 25
39
+ }
configuration_prosst.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+ class ProSSTConfig(PretrainedConfig):
4
+ model_type = "ProSST"
5
+
6
+ def __init__(
7
+ self,
8
+ token_dropout=True,
9
+ mlm_probability=0.15,
10
+ vocab_size=1024,
11
+ type_vocab_size=0,
12
+ ss_vocab_size=0,
13
+ hidden_size=768,
14
+ num_hidden_layers=12,
15
+ num_attention_heads=12,
16
+ intermediate_size=3072,
17
+ hidden_act="gelu",
18
+ hidden_dropout_prob=0.1,
19
+ attention_probs_dropout_prob=0.1,
20
+ mask_token_id=24,
21
+ initializer_range=0.02,
22
+ layer_norm_eps=1e-7,
23
+ pad_token_id=0,
24
+ position_biased_input=False,
25
+ pooler_dropout=0,
26
+ pooler_hidden_act="gelu",
27
+ pos_att_type=None,
28
+ position_embedding_type="relative",
29
+ max_position_embeddings=1024,
30
+ max_relative_positions=-1,
31
+ relative_attention=False,
32
+ pooling_head="mean",
33
+ scale_hidden=1,
34
+ **kwargs,
35
+ ):
36
+ super().__init__(**kwargs)
37
+ self.token_dropout = token_dropout
38
+ self.mlm_probability = mlm_probability
39
+ self.hidden_size = hidden_size
40
+ self.num_hidden_layers = num_hidden_layers
41
+ self.num_attention_heads = num_attention_heads
42
+ self.intermediate_size = intermediate_size
43
+ self.hidden_act = hidden_act
44
+ self.hidden_dropout_prob = hidden_dropout_prob
45
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
46
+ self.max_position_embeddings = max_position_embeddings
47
+ self.type_vocab_size = type_vocab_size
48
+ self.ss_vocab_size = ss_vocab_size
49
+ self.initializer_range = initializer_range
50
+ self.relative_attention = relative_attention
51
+ self.max_relative_positions = max_relative_positions
52
+ self.pad_token_id = pad_token_id
53
+ self.position_biased_input = position_biased_input
54
+ self.mask_token_id = mask_token_id
55
+ self.position_embedding_type = position_embedding_type
56
+ self.pooling_head = pooling_head
57
+ self.scale_hidden = scale_hidden
58
+
59
+ # Backwards compatibility
60
+ if type(pos_att_type) == str:
61
+ pos_att_type = [x.strip() for x in pos_att_type.lower().split("|")]
62
+
63
+ self.pos_att_type = pos_att_type
64
+ self.vocab_size = vocab_size
65
+ self.layer_norm_eps = layer_norm_eps
66
+
67
+ self.pooler_hidden_size = kwargs.get("pooler_hidden_size", hidden_size)
68
+ self.pooler_dropout = pooler_dropout
69
+ self.pooler_hidden_act = pooler_hidden_act
70
+
71
+ ProSSTConfig.register_for_auto_class()