|
from typing import Dict, List, Any |
|
import torch |
|
from torch import autocast |
|
from diffusers import StableDiffusionPipeline |
|
import base64 |
|
from io import BytesIO |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
if device.type != 'cuda': |
|
raise ValueError("need to run on GPU") |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
print("Loading model from:", path) |
|
self.pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16) |
|
self.pipe = self.pipe.to(device) |
|
self.pipe.safety_checker = lambda images, clip_input: (images, None) |
|
|
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the input data and the parameters for the inference. |
|
Return: |
|
A :obj:`dict`:. base64 encoded image |
|
""" |
|
inputs = data.pop("inputs", data) |
|
|
|
print("Running inference with data:", data) |
|
print("Running inference with inputs:", inputs) |
|
|
|
out = self.pipe( |
|
inputs, |
|
guidance_scale = 5, |
|
num_images_per_prompt = 1, |
|
) |
|
|
|
return out.images[0]; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|