HawkLlama
[🤗**Huggingface**](https://huggingface.co/AIM-ZJU/HawkLlama_8b) | [🗂️**Github**](https://github.com/aim-uofa/VLModel) | [📖**Technical Report**](assets/technical_report.pdf)
Zhejiang University, China
This is the official implementation of HawkLlama, an open-source multimodal large language model designed for real-world vision and language understanding applications. Our model features the following highlights.
1. HawkLlama-8B is constructed utilizing:
- [Llama3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B), the latest open-source large language model, trained on over 15 trillion tokens.
- [SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384), an enhancement over CLIP employing sigmoid loss, which achieves superior performance in image recognition.
- An efficient vision-language connector, designed to capture high-resolution details without increasing the number of visual tokens, helps reduce the training overhead associated with high-resolution images.
2. For model training, we utilize [Llava-Pretrain](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain) dataset for pretraining and a mixed dataset specifically curated for instruction tuning, which contains both multimodal and language-only data for supervised fine-tuning.
3. HawkLlama-8B is developed on [NeMo](https://github.com/NVIDIA/NeMo.git) framework, which facilitates 3D parallelism and offers scalability potential for future extension.
Our model is open-source and reproducable. Please check our [technical report](assets/technical_report.pdf) for more details.
## Contents
- [Setup](#setup)
- [Model Weights](#model-weights)
- [Inference](#inference)
- [Evaluation](#evaluation)
- [Demo](#demo)
## Setup
1. Create envoirment and activate it.
```Shell
conda create -n hawkllama python=3.10 -y
conda activate hawkllama
```
2. Clone and install this repo.
```
git clone https://github.com/aim-uofa/VLModel.git
cd VLModel
pip install -e .
pip install -e third_party/VLMEvalKit
```
## Model Weights
Please refer to our [HuggingFace repository](https://huggingface.co/AIM-ZJU/HawkLlama_8b) to download the pretrained model weights.
## Inference
We provide an example code for inference.
```Python
import torch
from PIL import Image
from HawkLlama.model import LlavaNextProcessor, LlavaNextForConditionalGeneration
from HawkLlama.utils.conversation import conv_llava_llama_3, DEFAULT_IMAGE_TOKEN
processor = LlavaNextProcessor.from_pretrained("AIM-ZJU/HawkLlama_8b")
model = LlavaNextForConditionalGeneration.from_pretrained("AIM-ZJU/HawkLlama_8b", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True)
model.to("cuda:0")
image_file = "assets/coin.png"
image = Image.open(image_file).convert('RGB')
prompt = "what coin is that?"
prompt = DEFAULT_IMAGE_TOKEN + "\n" + prompt
conversation = conv_llava_llama_3.copy()
user_role_ind = 0
bot_role_ind = 1
conversation.append_message(conversation.roles[user_role_ind], prompt)
conversation.append_message(conversation.roles[bot_role_ind], "")
prompt = conversation.get_prompt()
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
inputs['pixel_values'] = inputs['pixel_values'].to(torch.bfloat16)
output = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, max_new_tokens=2048, do_sample=False, use_cache=True)
print(processor.decode(output[0], skip_special_tokens=True))
```
## Evaluation
Evaluate is modified based on the VLMEval codebase.
``` bash
# single gpu
python third_party/VLMEvalKit/run.py --data MMBench_DEV_EN MMMU_DEV_VAL SEEDBench_IMG --model hawkllama_llama3_vlm --verbose
# multi-gpus
torchrun --nproc-per-node=8 third_party/VLMEvalKit/run.py --data MMBench_DEV_EN MMMU_DEV_VAL SEEDBench_IMG --model hawkllama_llama3_vlm --verbose
```
The results are shown below:
| Benchmark | Our MethodName | LLaVA-Llama3-v1.1 | LLaVA-Next |
|-----------------|----------------|-------------------|------------|
| MMMU val | **37.8** | 36.8 | 36.9 |
| SEEDBench img | **71.0** | 70.1 | 70.0 |
| MMBench-EN dev | **70.6** | 70.4 | 68.0 |
| MMBench-CN dev | **64.4** | 64.2 | 60.6 |
| CCBench | **33.9** | 31.6 | 24.7 |
| AI2D test | 65.6 | **70.0** | 67.1 |
| ScienceQA test | **76.1** | 72.9 | 70.4 |
| HallusionBench | 41.0 | **47.7** | 35.2 |
| MMStar | 43.0 | **45.1** | 38.1 |
## Demo
Welcome to try our [demo](http://115.236.57.99:30020/)!
## Acknowledgements
We express our appreciation to the following projects for their outstanding contributions in academia and code development: [LLaVA](https://github.com/haotian-liu/LLaVA), [NeMo](https://github.com/NVIDIA/NeMo), [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) and [xtuner](https://github.com/InternLM/xtuner).
## License
HawkLlama is released under the [Apache 2.0](https://github.com/Lightning-AI/lightning-llama/blob/main/LICENSE) license.