--- license: apache-2.0 ---
Lit-LLaMA

HawkLlama

[🤗**Huggingface**](https://huggingface.co/AIM-ZJU/HawkLlama_8b) | [🗂️**Github**](https://github.com/aim-uofa/VLModel) | [📖**Technical Report**](assets/technical_report.pdf) Zhejiang University, China
This is the official implementation of HawkLlama, an open-source multimodal large language model designed for real-world vision and language understanding applications. Our model features the following highlights. 1. HawkLlama-8B is constructed utilizing: - [Llama3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B), the latest open-source large language model, trained on over 15 trillion tokens. - [SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384), an enhancement over CLIP employing sigmoid loss, which achieves superior performance in image recognition. - An efficient vision-language connector, designed to capture high-resolution details without increasing the number of visual tokens, helps reduce the training overhead associated with high-resolution images. 2. For model training, we utilize [Llava-Pretrain](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain) dataset for pretraining and a mixed dataset specifically curated for instruction tuning, which contains both multimodal and language-only data for supervised fine-tuning. 3. HawkLlama-8B is developed on [NeMo](https://github.com/NVIDIA/NeMo.git) framework, which facilitates 3D parallelism and offers scalability potential for future extension. Our model is open-source and reproducable. Please check our [technical report](assets/technical_report.pdf) for more details. ## Contents - [Setup](#setup) - [Model Weights](#model-weights) - [Inference](#inference) - [Evaluation](#evaluation) - [Demo](#demo) ## Setup 1. Create envoirment and activate it. ```Shell conda create -n hawkllama python=3.10 -y conda activate hawkllama ``` 2. Clone and install this repo. ``` git clone https://github.com/aim-uofa/VLModel.git cd VLModel pip install -e . pip install -e third_party/VLMEvalKit ``` ## Model Weights Please refer to our [HuggingFace repository](https://huggingface.co/AIM-ZJU/HawkLlama_8b) to download the pretrained model weights. ## Inference We provide an example code for inference. ```Python import torch from PIL import Image from HawkLlama.model import LlavaNextProcessor, LlavaNextForConditionalGeneration from HawkLlama.utils.conversation import conv_llava_llama_3, DEFAULT_IMAGE_TOKEN processor = LlavaNextProcessor.from_pretrained("AIM-ZJU/HawkLlama_8b") model = LlavaNextForConditionalGeneration.from_pretrained("AIM-ZJU/HawkLlama_8b", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True) model.to("cuda:0") image_file = "assets/coin.png" image = Image.open(image_file).convert('RGB') prompt = "what coin is that?" prompt = DEFAULT_IMAGE_TOKEN + "\n" + prompt conversation = conv_llava_llama_3.copy() user_role_ind = 0 bot_role_ind = 1 conversation.append_message(conversation.roles[user_role_ind], prompt) conversation.append_message(conversation.roles[bot_role_ind], "") prompt = conversation.get_prompt() inputs = processor(prompt, image, return_tensors="pt").to("cuda:0") inputs['pixel_values'] = inputs['pixel_values'].to(torch.bfloat16) output = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, max_new_tokens=2048, do_sample=False, use_cache=True) print(processor.decode(output[0], skip_special_tokens=True)) ``` ## Evaluation Evaluate is modified based on the VLMEval codebase. ``` bash # single gpu python third_party/VLMEvalKit/run.py --data MMBench_DEV_EN MMMU_DEV_VAL SEEDBench_IMG --model hawkllama_llama3_vlm --verbose # multi-gpus torchrun --nproc-per-node=8 third_party/VLMEvalKit/run.py --data MMBench_DEV_EN MMMU_DEV_VAL SEEDBench_IMG --model hawkllama_llama3_vlm --verbose ``` The results are shown below: | Benchmark | Our MethodName | LLaVA-Llama3-v1.1 | LLaVA-Next | |-----------------|----------------|-------------------|------------| | MMMU val | **37.8** | 36.8 | 36.9 | | SEEDBench img | **71.0** | 70.1 | 70.0 | | MMBench-EN dev | **70.6** | 70.4 | 68.0 | | MMBench-CN dev | **64.4** | 64.2 | 60.6 | | CCBench | **33.9** | 31.6 | 24.7 | | AI2D test | 65.6 | **70.0** | 67.1 | | ScienceQA test | **76.1** | 72.9 | 70.4 | | HallusionBench | 41.0 | **47.7** | 35.2 | | MMStar | 43.0 | **45.1** | 38.1 | ## Demo Welcome to try our [demo](http://115.236.57.99:30020/)! ## Acknowledgements We express our appreciation to the following projects for their outstanding contributions in academia and code development: [LLaVA](https://github.com/haotian-liu/LLaVA), [NeMo](https://github.com/NVIDIA/NeMo), [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) and [xtuner](https://github.com/InternLM/xtuner). ## License HawkLlama is released under the [Apache 2.0](https://github.com/Lightning-AI/lightning-llama/blob/main/LICENSE) license.