yurakuratov
commited on
Commit
•
cf32edd
1
Parent(s):
afa2769
fix: non sparse models do not require deepspeed anymore
Browse files- modeling_bert.py +6 -124
modeling_bert.py
CHANGED
@@ -23,8 +23,6 @@ import warnings
|
|
23 |
from dataclasses import dataclass
|
24 |
from typing import Optional, Tuple
|
25 |
|
26 |
-
import numpy as np
|
27 |
-
|
28 |
import torch
|
29 |
import torch.utils.checkpoint
|
30 |
from packaging import version
|
@@ -306,7 +304,11 @@ class BertSelfAttention(nn.Module):
|
|
306 |
self.rotary_emb = RotaryEmbedding(self.rotary_dim, base=self.rotary_base)
|
307 |
|
308 |
if self.is_sparse:
|
309 |
-
|
|
|
|
|
|
|
|
|
310 |
self.sparse_self_attention = SparseSelfAttention(self.sparse_config, max_seq_length=self.max_seq_len)
|
311 |
|
312 |
def transpose_for_scores(self, x):
|
@@ -1871,126 +1873,6 @@ class BertForSequenceClassification(BertPreTrainedModel):
|
|
1871 |
hidden_states=outputs.hidden_states,
|
1872 |
attentions=outputs.attentions,
|
1873 |
)
|
1874 |
-
|
1875 |
-
|
1876 |
-
class APARENTLoss(nn.Module):
|
1877 |
-
def __init__(self):
|
1878 |
-
super(APARENTLoss, self).__init__()
|
1879 |
-
|
1880 |
-
def forward(self, p, y):
|
1881 |
-
for i, n in enumerate(y):
|
1882 |
-
if n == 0.:
|
1883 |
-
y[i] += 1e-3
|
1884 |
-
elif n == 1.:
|
1885 |
-
y[i] -= 1e-3
|
1886 |
-
|
1887 |
-
loss = p * torch.log(p / y) + (1 - p) * torch.log((1 - p) / (1 - y))
|
1888 |
-
|
1889 |
-
return loss.mean()
|
1890 |
-
|
1891 |
-
|
1892 |
-
|
1893 |
-
@add_start_docstrings(
|
1894 |
-
"""
|
1895 |
-
Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
1896 |
-
output) e.g. for GLUE tasks.
|
1897 |
-
""",
|
1898 |
-
BERT_START_DOCSTRING,
|
1899 |
-
)
|
1900 |
-
class BertForAPARENTSequenceRegression(BertPreTrainedModel):
|
1901 |
-
def __init__(self, config):
|
1902 |
-
super().__init__(config)
|
1903 |
-
self.num_labels = config.num_labels
|
1904 |
-
self.config = config
|
1905 |
-
|
1906 |
-
self.bert = BertModel(config)
|
1907 |
-
classifier_dropout = (
|
1908 |
-
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1909 |
-
)
|
1910 |
-
self.dropout = nn.Dropout(classifier_dropout)
|
1911 |
-
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1912 |
-
|
1913 |
-
# Initialize weights and apply final processing
|
1914 |
-
self.post_init()
|
1915 |
-
|
1916 |
-
|
1917 |
-
def forward(
|
1918 |
-
self,
|
1919 |
-
input_ids=None,
|
1920 |
-
attention_mask=None,
|
1921 |
-
token_type_ids=None,
|
1922 |
-
position_ids=None,
|
1923 |
-
head_mask=None,
|
1924 |
-
inputs_embeds=None,
|
1925 |
-
labels=None,
|
1926 |
-
pos_weight=None,
|
1927 |
-
output_attentions=None,
|
1928 |
-
output_hidden_states=None,
|
1929 |
-
return_dict=None,
|
1930 |
-
):
|
1931 |
-
r"""
|
1932 |
-
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1933 |
-
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1934 |
-
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1935 |
-
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1936 |
-
"""
|
1937 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1938 |
-
|
1939 |
-
if np.all(input_ids[:, -1].detach().cpu().numpy() == np.array([3 for i in range(len(input_ids))])):
|
1940 |
-
pass
|
1941 |
-
else:
|
1942 |
-
print("#########################################NOT ENOUGH TOKENS#######################################")
|
1943 |
-
|
1944 |
-
outputs = self.bert(
|
1945 |
-
input_ids,
|
1946 |
-
attention_mask=attention_mask,
|
1947 |
-
token_type_ids=token_type_ids,
|
1948 |
-
position_ids=position_ids,
|
1949 |
-
head_mask=head_mask,
|
1950 |
-
inputs_embeds=inputs_embeds,
|
1951 |
-
output_attentions=output_attentions,
|
1952 |
-
output_hidden_states=output_hidden_states,
|
1953 |
-
return_dict=return_dict,
|
1954 |
-
)
|
1955 |
-
|
1956 |
-
pooled_output = outputs[1]
|
1957 |
-
|
1958 |
-
pooled_output = self.dropout(pooled_output)
|
1959 |
-
logits = self.classifier(pooled_output)
|
1960 |
-
logits = torch.sigmoid(logits)
|
1961 |
-
|
1962 |
-
loss = None
|
1963 |
-
if labels is not None:
|
1964 |
-
if self.config.problem_type is None:
|
1965 |
-
if self.num_labels == 1:
|
1966 |
-
self.config.problem_type = "regression"
|
1967 |
-
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1968 |
-
self.config.problem_type = "single_label_classification"
|
1969 |
-
else:
|
1970 |
-
self.config.problem_type = "multi_label_classification"
|
1971 |
-
|
1972 |
-
if self.config.problem_type == "regression":
|
1973 |
-
loss_fct = MSELoss() #APARENTLoss()
|
1974 |
-
if self.num_labels == 1:
|
1975 |
-
loss = loss_fct(logits.squeeze().float(), labels.squeeze().float()) # if it is not a sparse model then --- labels.squeeze().float(), else --- labels.squeeze().half()
|
1976 |
-
else:
|
1977 |
-
loss = loss_fct(logits, labels)
|
1978 |
-
elif self.config.problem_type == "single_label_classification":
|
1979 |
-
loss_fct = CrossEntropyLoss()
|
1980 |
-
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1981 |
-
elif self.config.problem_type == "multi_label_classification":
|
1982 |
-
loss_fct = BCEWithLogitsLoss(pos_weight=pos_weight)
|
1983 |
-
loss = loss_fct(logits, labels)
|
1984 |
-
if not return_dict:
|
1985 |
-
output = (logits,) + outputs[2:]
|
1986 |
-
return ((loss,) + output) if loss is not None else output
|
1987 |
-
|
1988 |
-
return SequenceClassifierOutput(
|
1989 |
-
loss=loss,
|
1990 |
-
logits=logits,
|
1991 |
-
hidden_states=outputs.hidden_states,
|
1992 |
-
attentions=outputs.attentions,
|
1993 |
-
)
|
1994 |
|
1995 |
|
1996 |
@add_start_docstrings(
|
@@ -2174,7 +2056,7 @@ class BertForTokenClassification(BertPreTrainedModel):
|
|
2174 |
loss_fct = BCEWithLogitsLoss(reduction='none', pos_weight=pos_weight)
|
2175 |
loss = loss_fct(logits, labels)
|
2176 |
loss = loss * labels_mask.unsqueeze(-1)
|
2177 |
-
loss = loss.sum() / labels_mask.sum() if labels_mask.sum() != 0.0 else 0.0
|
2178 |
|
2179 |
if not return_dict:
|
2180 |
output = (logits,) + outputs[2:]
|
|
|
23 |
from dataclasses import dataclass
|
24 |
from typing import Optional, Tuple
|
25 |
|
|
|
|
|
26 |
import torch
|
27 |
import torch.utils.checkpoint
|
28 |
from packaging import version
|
|
|
304 |
self.rotary_emb = RotaryEmbedding(self.rotary_dim, base=self.rotary_base)
|
305 |
|
306 |
if self.is_sparse:
|
307 |
+
try:
|
308 |
+
from deepspeed.ops.sparse_attention import SparseSelfAttention
|
309 |
+
except ImportError as e:
|
310 |
+
logger.error(f'DeepSpeed is required for Sparse Ops: {e}')
|
311 |
+
raise
|
312 |
self.sparse_self_attention = SparseSelfAttention(self.sparse_config, max_seq_length=self.max_seq_len)
|
313 |
|
314 |
def transpose_for_scores(self, x):
|
|
|
1873 |
hidden_states=outputs.hidden_states,
|
1874 |
attentions=outputs.attentions,
|
1875 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1876 |
|
1877 |
|
1878 |
@add_start_docstrings(
|
|
|
2056 |
loss_fct = BCEWithLogitsLoss(reduction='none', pos_weight=pos_weight)
|
2057 |
loss = loss_fct(logits, labels)
|
2058 |
loss = loss * labels_mask.unsqueeze(-1)
|
2059 |
+
loss = loss.sum() / labels_mask.sum() if labels_mask.sum() != 0.0 else torch.tensor(0.0, device=logits.device)
|
2060 |
|
2061 |
if not return_dict:
|
2062 |
output = (logits,) + outputs[2:]
|