File size: 3,368 Bytes
34790ef a73ff8a 86a3507 fb98bf0 a73ff8a 34790ef 55cead9 5ba4f47 43d2b1a 794f3b6 92d5e4e c0c9947 faba0c2 9752729 7feff49 c93c3a3 d2275f8 7f6daef db2fc63 b9f6786 fb98bf0 8dceac1 da5491c 4c0a1ab 86a3507 1bd6601 56c88ec 051a5dc 028d15f 7cf3871 713d369 2a989ef 8739688 b7f88eb a73ff8a 34790ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
base_model: bert-base-chinese
tags:
- generated_from_keras_callback
model-index:
- name: AIYIYA/my_aa
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# AIYIYA/my_aa
This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.7596
- Validation Loss: 1.4913
- Train Accuracy: 0.6753
- Epoch: 29
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 280, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 3.4316 | 3.2876 | 0.2078 | 0 |
| 3.0452 | 3.0083 | 0.2338 | 1 |
| 2.6954 | 2.7106 | 0.3766 | 2 |
| 2.3815 | 2.4910 | 0.4935 | 3 |
| 2.0499 | 2.3035 | 0.5584 | 4 |
| 1.8322 | 2.1419 | 0.5844 | 5 |
| 1.6292 | 1.9997 | 0.6104 | 6 |
| 1.4675 | 1.8933 | 0.6234 | 7 |
| 1.3115 | 1.8016 | 0.5974 | 8 |
| 1.2088 | 1.7273 | 0.6364 | 9 |
| 1.1053 | 1.6728 | 0.6623 | 10 |
| 1.0254 | 1.6284 | 0.6364 | 11 |
| 0.9600 | 1.6252 | 0.6494 | 12 |
| 0.9058 | 1.5662 | 0.6623 | 13 |
| 0.8675 | 1.5423 | 0.6623 | 14 |
| 0.8434 | 1.5208 | 0.6753 | 15 |
| 0.8356 | 1.5140 | 0.6753 | 16 |
| 0.8070 | 1.5024 | 0.6753 | 17 |
| 0.7749 | 1.4941 | 0.6753 | 18 |
| 0.7805 | 1.4913 | 0.6753 | 19 |
| 0.7764 | 1.4913 | 0.6753 | 20 |
| 0.7630 | 1.4913 | 0.6753 | 21 |
| 0.7806 | 1.4913 | 0.6753 | 22 |
| 0.7665 | 1.4913 | 0.6753 | 23 |
| 0.7803 | 1.4913 | 0.6753 | 24 |
| 0.7778 | 1.4913 | 0.6753 | 25 |
| 0.7781 | 1.4913 | 0.6753 | 26 |
| 0.7798 | 1.4913 | 0.6753 | 27 |
| 0.7845 | 1.4913 | 0.6753 | 28 |
| 0.7596 | 1.4913 | 0.6753 | 29 |
### Framework versions
- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.13.1
- Tokenizers 0.13.3
|