File size: 3,368 Bytes
34790ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a73ff8a
86a3507
fb98bf0
a73ff8a
34790ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55cead9
5ba4f47
43d2b1a
794f3b6
92d5e4e
c0c9947
faba0c2
9752729
7feff49
c93c3a3
d2275f8
7f6daef
db2fc63
b9f6786
fb98bf0
8dceac1
da5491c
4c0a1ab
86a3507
1bd6601
56c88ec
051a5dc
028d15f
7cf3871
713d369
2a989ef
8739688
b7f88eb
a73ff8a
34790ef
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
base_model: bert-base-chinese
tags:
- generated_from_keras_callback
model-index:
- name: AIYIYA/my_aa
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# AIYIYA/my_aa

This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.7596
- Validation Loss: 1.4913
- Train Accuracy: 0.6753
- Epoch: 29

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 280, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 3.4316     | 3.2876          | 0.2078         | 0     |
| 3.0452     | 3.0083          | 0.2338         | 1     |
| 2.6954     | 2.7106          | 0.3766         | 2     |
| 2.3815     | 2.4910          | 0.4935         | 3     |
| 2.0499     | 2.3035          | 0.5584         | 4     |
| 1.8322     | 2.1419          | 0.5844         | 5     |
| 1.6292     | 1.9997          | 0.6104         | 6     |
| 1.4675     | 1.8933          | 0.6234         | 7     |
| 1.3115     | 1.8016          | 0.5974         | 8     |
| 1.2088     | 1.7273          | 0.6364         | 9     |
| 1.1053     | 1.6728          | 0.6623         | 10    |
| 1.0254     | 1.6284          | 0.6364         | 11    |
| 0.9600     | 1.6252          | 0.6494         | 12    |
| 0.9058     | 1.5662          | 0.6623         | 13    |
| 0.8675     | 1.5423          | 0.6623         | 14    |
| 0.8434     | 1.5208          | 0.6753         | 15    |
| 0.8356     | 1.5140          | 0.6753         | 16    |
| 0.8070     | 1.5024          | 0.6753         | 17    |
| 0.7749     | 1.4941          | 0.6753         | 18    |
| 0.7805     | 1.4913          | 0.6753         | 19    |
| 0.7764     | 1.4913          | 0.6753         | 20    |
| 0.7630     | 1.4913          | 0.6753         | 21    |
| 0.7806     | 1.4913          | 0.6753         | 22    |
| 0.7665     | 1.4913          | 0.6753         | 23    |
| 0.7803     | 1.4913          | 0.6753         | 24    |
| 0.7778     | 1.4913          | 0.6753         | 25    |
| 0.7781     | 1.4913          | 0.6753         | 26    |
| 0.7798     | 1.4913          | 0.6753         | 27    |
| 0.7845     | 1.4913          | 0.6753         | 28    |
| 0.7596     | 1.4913          | 0.6753         | 29    |


### Framework versions

- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.13.1
- Tokenizers 0.13.3