metadata
license: apache-2.0
base_model: microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: >-
swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-LungCancer-LC25000-AH-40-30-30-S
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: Augmented-Final
split: train
args: Augmented-Final
metrics:
- name: Accuracy
type: accuracy
value: 0.9931339977851605
swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-LungCancer-LC25000-AH-40-30-30-S
This model is a fine-tuned version of microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0217
- Accuracy: 0.9931
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.5
- num_epochs: 7
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.176 | 1.0 | 187 | 0.0891 | 0.9663 |
0.2574 | 2.0 | 374 | 0.2127 | 0.9249 |
0.2416 | 3.0 | 561 | 0.2407 | 0.9236 |
0.2457 | 4.0 | 749 | 0.1245 | 0.9632 |
0.3583 | 5.0 | 936 | 0.1709 | 0.9404 |
0.149 | 6.0 | 1123 | 0.0502 | 0.9814 |
0.061 | 6.99 | 1309 | 0.0217 | 0.9931 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3