AMfeta99 commited on
Commit
9b06f91
1 Parent(s): 36d77b6

Model save

Browse files
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-224
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ - precision
11
+ - recall
12
+ - f1
13
+ model-index:
14
+ - name: vit-base-oxford-brain-tumor_x-ray
15
+ results:
16
+ - task:
17
+ name: Image Classification
18
+ type: image-classification
19
+ dataset:
20
+ name: imagefolder
21
+ type: imagefolder
22
+ config: default
23
+ split: train
24
+ args: default
25
+ metrics:
26
+ - name: Accuracy
27
+ type: accuracy
28
+ value: 0.7692307692307693
29
+ - name: Precision
30
+ type: precision
31
+ value: 0.7692307692307693
32
+ - name: Recall
33
+ type: recall
34
+ value: 0.7692307692307693
35
+ - name: F1
36
+ type: f1
37
+ value: 0.7692307692307693
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # vit-base-oxford-brain-tumor_x-ray
44
+
45
+ This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.5912
48
+ - Accuracy: 0.7692
49
+ - Precision: 0.7692
50
+ - Recall: 0.7692
51
+ - F1: 0.7692
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 0.0003
71
+ - train_batch_size: 20
72
+ - eval_batch_size: 8
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 5
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
81
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
82
+ | 0.6752 | 1.0 | 11 | 0.4894 | 0.76 | 0.7148 | 0.76 | 0.7114 |
83
+ | 0.5673 | 2.0 | 22 | 0.4630 | 0.72 | 0.57 | 0.72 | 0.6363 |
84
+ | 0.6173 | 3.0 | 33 | 0.4269 | 0.92 | 0.92 | 0.92 | 0.92 |
85
+ | 0.5562 | 4.0 | 44 | 0.5047 | 0.84 | 0.8653 | 0.84 | 0.8470 |
86
+ | 0.5285 | 5.0 | 55 | 0.4036 | 0.92 | 0.92 | 0.92 | 0.92 |
87
+
88
+
89
+ ### Framework versions
90
+
91
+ - Transformers 4.41.2
92
+ - Pytorch 2.3.0+cu121
93
+ - Datasets 2.19.2
94
+ - Tokenizers 0.19.1
runs/Jun13_11-15-55_60cbcd28d8fc/events.out.tfevents.1718278296.60cbcd28d8fc.42279.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f524b40cc9d18cb1d4b5fb46534c6288c71a45ffb6950dee4d0a6297900d8dd7
3
+ size 551