Update README.md
Browse files
README.md
CHANGED
@@ -5,4 +5,28 @@ datasets:
|
|
5 |
language:
|
6 |
- en
|
7 |
pipeline_tag: sentence-similarity
|
8 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
language:
|
6 |
- en
|
7 |
pipeline_tag: sentence-similarity
|
8 |
+
---
|
9 |
+
## Model to score relative persuasive language between pairs
|
10 |
+
More info about training, evaluation, and use in paper is here: link.
|
11 |
+
|
12 |
+
Python:
|
13 |
+
```python
|
14 |
+
from transformers import AutoModelForSequenceClassification,AutoTokenizer
|
15 |
+
import torch
|
16 |
+
modelname='APauli/Persuasive_language_in_pairs'
|
17 |
+
model = AutoModelForSequenceClassification.from_pretrained(modelname)
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(modelname)
|
19 |
+
|
20 |
+
def predict(textA, textB, model,tokenizer):
|
21 |
+
encoded_input = tokenizer(textA, textB, padding=True, truncation=True,max_length=256, return_tensors="pt")
|
22 |
+
with torch.no_grad():
|
23 |
+
logits = model(**encoded_input).logits
|
24 |
+
score1=logits.detach().cpu().numpy()
|
25 |
+
#flipped
|
26 |
+
encoded_input = tokenizer(textB, textA, padding=True, truncation=True,max_length=256, return_tensors="pt")
|
27 |
+
with torch.no_grad():
|
28 |
+
logits = model(**encoded_input).logits
|
29 |
+
score2=logits.detach().cpu().numpy()*(-1)
|
30 |
+
score = (score1+score2)/2
|
31 |
+
return score
|
32 |
+
```
|