--- license: cc-by-nc-4.0 datasets: - APauli/Persuasive-Pairs language: - en pipeline_tag: sentence-similarity --- # Model to score relative persuasive language between pairs More info about training, evaluation, and use in paper is here: https://arxiv.org/abs/2406.17753 Python: ```python from transformers import AutoModelForSequenceClassification,AutoTokenizer import torch modelname='APauli/Persuasive_language_in_pairs' model = AutoModelForSequenceClassification.from_pretrained(modelname) tokenizer = AutoTokenizer.from_pretrained(modelname) def predict(textA, textB, model,tokenizer): encoded_input = tokenizer(textA, textB, padding=True, truncation=True,max_length=256, return_tensors="pt") with torch.no_grad(): logits = model(**encoded_input).logits score1=logits.detach().cpu().numpy() #flipped encoded_input = tokenizer(textB, textA, padding=True, truncation=True,max_length=256, return_tensors="pt") with torch.no_grad(): logits = model(**encoded_input).logits score2=logits.detach().cpu().numpy()*(-1) score = (score1+score2)/2 return score ``` ## Citation If you find our dataset helpful, kindly refer to us in your work using the following citation: ``` @misc{pauli2024measuringbenchmarkinglargelanguage, title={Measuring and Benchmarking Large Language Models' Capabilities to Generate Persuasive Language}, author={Amalie Brogaard Pauli and Isabelle Augenstein and Ira Assent}, year={2024}, eprint={2406.17753}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2406.17753}, } ```