efederici commited on
Commit
7d9873b
1 Parent(s): bb43502

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -25
README.md CHANGED
@@ -12,15 +12,11 @@ datasets:
12
  - ARTeLab/ilpost
13
  ---
14
 
15
-
16
-
17
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
- should probably proofread and complete it, then remove this comment. -->
19
-
20
  # summarization_ilpost
21
 
22
- This model is a fine-tuned version of [gsarti/it5-base](https://huggingface.co/gsarti/it5-base) on IlPost dataset.
23
- It achieves the following results on the evaluation set:
 
24
  - Loss: 1.6020
25
  - Rouge1: 33.7802
26
  - Rouge2: 16.2953
@@ -28,19 +24,13 @@ It achieves the following results on the evaluation set:
28
  - Rougelsum: 30.2273
29
  - Gen Len: 45.3175
30
 
31
- ## Model description
32
-
33
- More information needed
34
-
35
- ## Intended uses & limitations
36
-
37
- More information needed
38
 
39
- ## Training and evaluation data
40
-
41
- More information needed
42
-
43
- ## Training procedure
44
 
45
  ### Training hyperparameters
46
 
@@ -53,13 +43,8 @@ The following hyperparameters were used during training:
53
  - lr_scheduler_type: linear
54
  - num_epochs: 4.0
55
 
56
- ### Training results
57
-
58
-
59
-
60
  ### Framework versions
61
-
62
  - Transformers 4.12.0.dev0
63
  - Pytorch 1.9.1+cu102
64
  - Datasets 1.12.1
65
- - Tokenizers 0.10.3
 
12
  - ARTeLab/ilpost
13
  ---
14
 
 
 
 
 
 
15
  # summarization_ilpost
16
 
17
+ This model is a fine-tuned version of [gsarti/it5-base](https://huggingface.co/gsarti/it5-base) on IlPost dataset for Abstractive Summarization.
18
+
19
+ It achieves the following results:
20
  - Loss: 1.6020
21
  - Rouge1: 33.7802
22
  - Rouge2: 16.2953
 
24
  - Rougelsum: 30.2273
25
  - Gen Len: 45.3175
26
 
27
+ ## Usage
 
 
 
 
 
 
28
 
29
+ ```python
30
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
31
+ tokenizer = T5Tokenizer.from_pretrained("ARTeLab/it5-summarization-ilpost")
32
+ model = T5ForConditionalGeneration.from_pretrained("ARTeLab/it5-summarization-ilpost")
33
+ ```
34
 
35
  ### Training hyperparameters
36
 
 
43
  - lr_scheduler_type: linear
44
  - num_epochs: 4.0
45
 
 
 
 
 
46
  ### Framework versions
 
47
  - Transformers 4.12.0.dev0
48
  - Pytorch 1.9.1+cu102
49
  - Datasets 1.12.1
50
+ - Tokenizers 0.10.3