efederici commited on
Commit
1f0275a
1 Parent(s): 5a96582

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -23
README.md CHANGED
@@ -12,13 +12,11 @@ datasets:
12
  - ARTeLab/mlsum-it
13
  ---
14
 
15
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
- should probably proofread and complete it, then remove this comment. -->
17
-
18
  # summarization_mlsum
19
 
20
- This model is a fine-tuned version of [gsarti/it5-base](https://huggingface.co/gsarti/it5-base) on an unknown dataset.
21
- It achieves the following results on the evaluation set:
 
22
  - Loss: 2.0190
23
  - Rouge1: 19.2854
24
  - Rouge2: 6.0392
@@ -26,19 +24,12 @@ It achieves the following results on the evaluation set:
26
  - Rougelsum: 16.616
27
  - Gen Len: 32.7635
28
 
29
- ## Model description
30
-
31
- More information needed
32
-
33
- ## Intended uses & limitations
34
-
35
- More information needed
36
-
37
- ## Training and evaluation data
38
-
39
- More information needed
40
-
41
- ## Training procedure
42
 
43
  ### Training hyperparameters
44
 
@@ -51,13 +42,9 @@ The following hyperparameters were used during training:
51
  - lr_scheduler_type: linear
52
  - num_epochs: 4.0
53
 
54
- ### Training results
55
-
56
-
57
-
58
  ### Framework versions
59
 
60
  - Transformers 4.12.0.dev0
61
  - Pytorch 1.9.1+cu102
62
  - Datasets 1.12.1
63
- - Tokenizers 0.10.3
 
12
  - ARTeLab/mlsum-it
13
  ---
14
 
 
 
 
15
  # summarization_mlsum
16
 
17
+ This model is a fine-tuned version of [gsarti/it5-base](https://huggingface.co/gsarti/it5-base) on MLSum-it for Abstractive Summarization.
18
+
19
+ It achieves the following results:
20
  - Loss: 2.0190
21
  - Rouge1: 19.2854
22
  - Rouge2: 6.0392
 
24
  - Rougelsum: 16.616
25
  - Gen Len: 32.7635
26
 
27
+ ## Usage
28
+ ```python
29
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
30
+ tokenizer = T5Tokenizer.from_pretrained("ARTeLab/it5-summarization-mlsum")
31
+ model = T5ForConditionalGeneration.from_pretrained("ARTeLab/it5-summarization-mlsum")
32
+ ```
 
 
 
 
 
 
 
33
 
34
  ### Training hyperparameters
35
 
 
42
  - lr_scheduler_type: linear
43
  - num_epochs: 4.0
44
 
 
 
 
 
45
  ### Framework versions
46
 
47
  - Transformers 4.12.0.dev0
48
  - Pytorch 1.9.1+cu102
49
  - Datasets 1.12.1
50
+ - Tokenizers 0.10.3