|
|
|
|
|
|
|
from typing import Any, Dict, List, Mapping |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from ...utils import is_cython_available, requires_backends |
|
|
|
|
|
if is_cython_available(): |
|
import pyximport |
|
|
|
pyximport.install(setup_args={"include_dirs": np.get_include()}) |
|
from . import algos_graphormer |
|
|
|
|
|
def convert_to_single_emb(x, offset: int = 512): |
|
feature_num = x.shape[1] if len(x.shape) > 1 else 1 |
|
feature_offset = 1 + np.arange(0, feature_num * offset, offset, dtype=np.int64) |
|
x = x + feature_offset |
|
return x |
|
|
|
|
|
def preprocess_item(item, keep_features=True): |
|
requires_backends(preprocess_item, ["cython"]) |
|
|
|
if keep_features and "edge_attr" in item.keys(): |
|
edge_attr = np.asarray(item["edge_attr"], dtype=np.int64) |
|
else: |
|
edge_attr = np.ones((len(item["edge_index"][0]), 1), dtype=np.int64) |
|
|
|
if keep_features and "node_feat" in item.keys(): |
|
node_feature = np.asarray(item["node_feat"], dtype=np.int64) |
|
else: |
|
node_feature = np.ones((item["num_nodes"], 1), dtype=np.int64) |
|
|
|
edge_index = np.asarray(item["edge_index"], dtype=np.int64) |
|
|
|
input_nodes = convert_to_single_emb(node_feature) + 1 |
|
num_nodes = item["num_nodes"] |
|
|
|
if len(edge_attr.shape) == 1: |
|
edge_attr = edge_attr[:, None] |
|
attn_edge_type = np.zeros([num_nodes, num_nodes, edge_attr.shape[-1]], dtype=np.int64) |
|
attn_edge_type[edge_index[0], edge_index[1]] = convert_to_single_emb(edge_attr) + 1 |
|
|
|
|
|
adj = np.zeros([num_nodes, num_nodes], dtype=bool) |
|
adj[edge_index[0], edge_index[1]] = True |
|
|
|
shortest_path_result, path = algos_graphormer.floyd_warshall(adj) |
|
max_dist = np.amax(shortest_path_result) |
|
|
|
input_edges = algos_graphormer.gen_edge_input(max_dist, path, attn_edge_type) |
|
attn_bias = np.zeros([num_nodes + 1, num_nodes + 1], dtype=np.single) |
|
|
|
|
|
item["input_nodes"] = input_nodes + 1 |
|
item["attn_bias"] = attn_bias |
|
item["attn_edge_type"] = attn_edge_type |
|
item["spatial_pos"] = shortest_path_result.astype(np.int64) + 1 |
|
item["in_degree"] = np.sum(adj, axis=1).reshape(-1) + 1 |
|
item["out_degree"] = item["in_degree"] |
|
item["input_edges"] = input_edges + 1 |
|
if "labels" not in item: |
|
item["labels"] = item["y"] |
|
|
|
return item |
|
|
|
|
|
class GraphormerDataCollator: |
|
def __init__(self, spatial_pos_max=20, on_the_fly_processing=False): |
|
if not is_cython_available(): |
|
raise ImportError("Graphormer preprocessing needs Cython (pyximport)") |
|
|
|
self.spatial_pos_max = spatial_pos_max |
|
self.on_the_fly_processing = on_the_fly_processing |
|
|
|
def __call__(self, features: List[dict]) -> Dict[str, Any]: |
|
if self.on_the_fly_processing: |
|
features = [preprocess_item(i) for i in features] |
|
|
|
if not isinstance(features[0], Mapping): |
|
features = [vars(f) for f in features] |
|
batch = {} |
|
|
|
max_node_num = max(len(i["input_nodes"]) for i in features) |
|
node_feat_size = len(features[0]["input_nodes"][0]) |
|
edge_feat_size = len(features[0]["attn_edge_type"][0][0]) |
|
max_dist = max(len(i["input_edges"][0][0]) for i in features) |
|
edge_input_size = len(features[0]["input_edges"][0][0][0]) |
|
batch_size = len(features) |
|
|
|
batch["attn_bias"] = torch.zeros(batch_size, max_node_num + 1, max_node_num + 1, dtype=torch.float) |
|
batch["attn_edge_type"] = torch.zeros(batch_size, max_node_num, max_node_num, edge_feat_size, dtype=torch.long) |
|
batch["spatial_pos"] = torch.zeros(batch_size, max_node_num, max_node_num, dtype=torch.long) |
|
batch["in_degree"] = torch.zeros(batch_size, max_node_num, dtype=torch.long) |
|
batch["input_nodes"] = torch.zeros(batch_size, max_node_num, node_feat_size, dtype=torch.long) |
|
batch["input_edges"] = torch.zeros( |
|
batch_size, max_node_num, max_node_num, max_dist, edge_input_size, dtype=torch.long |
|
) |
|
|
|
for ix, f in enumerate(features): |
|
for k in ["attn_bias", "attn_edge_type", "spatial_pos", "in_degree", "input_nodes", "input_edges"]: |
|
f[k] = torch.tensor(f[k]) |
|
|
|
if len(f["attn_bias"][1:, 1:][f["spatial_pos"] >= self.spatial_pos_max]) > 0: |
|
f["attn_bias"][1:, 1:][f["spatial_pos"] >= self.spatial_pos_max] = float("-inf") |
|
|
|
batch["attn_bias"][ix, : f["attn_bias"].shape[0], : f["attn_bias"].shape[1]] = f["attn_bias"] |
|
batch["attn_edge_type"][ix, : f["attn_edge_type"].shape[0], : f["attn_edge_type"].shape[1], :] = f[ |
|
"attn_edge_type" |
|
] |
|
batch["spatial_pos"][ix, : f["spatial_pos"].shape[0], : f["spatial_pos"].shape[1]] = f["spatial_pos"] |
|
batch["in_degree"][ix, : f["in_degree"].shape[0]] = f["in_degree"] |
|
batch["input_nodes"][ix, : f["input_nodes"].shape[0], :] = f["input_nodes"] |
|
batch["input_edges"][ |
|
ix, : f["input_edges"].shape[0], : f["input_edges"].shape[1], : f["input_edges"].shape[2], : |
|
] = f["input_edges"] |
|
|
|
batch["out_degree"] = batch["in_degree"] |
|
|
|
sample = features[0]["labels"] |
|
if len(sample) == 1: |
|
if isinstance(sample[0], float): |
|
batch["labels"] = torch.from_numpy(np.concatenate([i["labels"] for i in features])) |
|
else: |
|
batch["labels"] = torch.from_numpy(np.concatenate([i["labels"] for i in features])) |
|
else: |
|
batch["labels"] = torch.from_numpy(np.stack([i["labels"] for i in features], axis=0)) |
|
|
|
return batch |