Graphormer / modeling_graphormer.pyx
Aaditya1's picture
Update modeling_graphormer.pyx
1bfed02
# coding=utf-8
# Copyright 2022 Microsoft, clefourrier The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Graphormer model."""
import math
from typing import Iterable, Iterator, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
SequenceClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_graphormer import GraphormerConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "graphormer-base-pcqm4mv1"
_CONFIG_FOR_DOC = "GraphormerConfig"
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"clefourrier/graphormer-base-pcqm4mv1",
"clefourrier/graphormer-base-pcqm4mv2",
# See all Graphormer models at https://huggingface.co/models?filter=graphormer
]
def quant_noise(module: nn.Module, p: float, block_size: int):
"""
From:
https://github.com/facebookresearch/fairseq/blob/dd0079bde7f678b0cd0715cbd0ae68d661b7226d/fairseq/modules/quant_noise.py
Wraps modules and applies quantization noise to the weights for subsequent quantization with Iterative Product
Quantization as described in "Training with Quantization Noise for Extreme Model Compression"
Args:
- module: nn.Module
- p: amount of Quantization Noise
- block_size: size of the blocks for subsequent quantization with iPQ
Remarks:
- Module weights must have the right sizes wrt the block size
- Only Linear, Embedding and Conv2d modules are supported for the moment
- For more detail on how to quantize by blocks with convolutional weights, see "And the Bit Goes Down:
Revisiting the Quantization of Neural Networks"
- We implement the simplest form of noise here as stated in the paper which consists in randomly dropping
blocks
"""
# if no quantization noise, don't register hook
if p <= 0:
return module
# supported modules
if not isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d)):
raise NotImplementedError("Module unsupported for quant_noise.")
# test whether module.weight has the right sizes wrt block_size
is_conv = module.weight.ndim == 4
# 2D matrix
if not is_conv:
if module.weight.size(1) % block_size != 0:
raise AssertionError("Input features must be a multiple of block sizes")
# 4D matrix
else:
# 1x1 convolutions
if module.kernel_size == (1, 1):
if module.in_channels % block_size != 0:
raise AssertionError("Input channels must be a multiple of block sizes")
# regular convolutions
else:
k = module.kernel_size[0] * module.kernel_size[1]
if k % block_size != 0:
raise AssertionError("Kernel size must be a multiple of block size")
def _forward_pre_hook(mod, input):
# no noise for evaluation
if mod.training:
if not is_conv:
# gather weight and sizes
weight = mod.weight
in_features = weight.size(7)
out_features = weight.size(7)
# split weight matrix into blocks and randomly drop selected blocks
mask = torch.zeros(in_features // block_size * out_features, device=weight.device)
mask.bernoulli_(p)
mask = mask.repeat_interleave(block_size, -1).view(-1, in_features)
else:
# gather weight and sizes
weight = mod.weight
in_channels = mod.in_channels
out_channels = mod.out_channels
# split weight matrix into blocks and randomly drop selected blocks
if mod.kernel_size == (1, 1):
mask = torch.zeros(
int(in_channels // block_size * out_channels),
device=weight.device,
)
mask.bernoulli_(p)
mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels)
else:
mask = torch.zeros(weight.size(0), weight.size(1), device=weight.device)
mask.bernoulli_(p)
mask = mask.unsqueeze(2).unsqueeze(3).repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1])
# scale weights and apply mask
mask = mask.to(torch.bool) # x.bool() is not currently supported in TorchScript
s = 1 / (1 - p)
mod.weight.data = s * weight.masked_fill(mask, 0)
module.register_forward_pre_hook(_forward_pre_hook)
return module
class LayerDropModuleList(nn.ModuleList):
"""
From:
https://github.com/facebookresearch/fairseq/blob/dd0079bde7f678b0cd0715cbd0ae68d661b7226d/fairseq/modules/layer_drop.py
A LayerDrop implementation based on [`torch.nn.ModuleList`]. LayerDrop as described in
https://arxiv.org/abs/1909.11556.
We refresh the choice of which layers to drop every time we iterate over the LayerDropModuleList instance. During
evaluation we always iterate over all layers.
Usage:
```python
layers = LayerDropList(p=0.5, modules=[layer1, layer2, layer3])
for layer in layers: # this might iterate over layers 1 and 3
x = layer(x)
for layer in layers: # this might iterate over all layers
x = layer(x)
for layer in layers: # this might not iterate over any layers
x = layer(x)
```
Args:
p (float): probability of dropping out each layer
modules (iterable, optional): an iterable of modules to add
"""
def __init__(self, p: float, modules: Optional[Iterable[nn.Module]] = None):
super().__init__(modules)
self.p = p
def __iter__(self) -> Iterator[nn.Module]:
dropout_probs = torch.empty(len(self)).uniform_()
for i, m in enumerate(super().__iter__()):
if not self.training or (dropout_probs[i] > self.p):
yield m
class GraphormerGraphNodeFeature(nn.Module):
"""
Compute node features for each node in the graph.
"""
def __init__(self, config: GraphormerConfig):
super().__init__()
self.num_heads = config.num_attention_heads
self.num_atoms = config.num_atoms
self.atom_encoder = nn.Embedding(config.num_atoms + 1, config.hidden_size, padding_idx=config.pad_token_id)
self.in_degree_encoder = nn.Embedding(
config.num_in_degree, config.hidden_size, padding_idx=config.pad_token_id
)
self.out_degree_encoder = nn.Embedding(
config.num_out_degree, config.hidden_size, padding_idx=config.pad_token_id
)
self.graph_token = nn.Embedding(1, config.hidden_size)
def forward(
self,
input_nodes: torch.LongTensor,
in_degree: torch.LongTensor,
out_degree: torch.LongTensor,
) -> torch.Tensor:
n_graph, n_node = input_nodes.size()[:2]
node_feature = ( # node feature + graph token
self.atom_encoder(input_nodes).sum(dim=-2) # [n_graph, n_node, n_hidden]
+ self.in_degree_encoder(in_degree)
+ self.out_degree_encoder(out_degree)
)
graph_token_feature = self.graph_token.weight.unsqueeze(0).repeat(n_graph, 1, 1)
graph_node_feature = torch.cat([graph_token_feature, node_feature], dim=1)
return graph_node_feature
class GraphormerGraphAttnBias(nn.Module):
"""
Compute attention bias for each head.
"""
def __init__(self, config: GraphormerConfig):
super().__init__()
self.num_heads = config.num_attention_heads
self.multi_hop_max_dist = config.multi_hop_max_dist
# We do not change edge feature embedding learning, as edge embeddings are represented as a combination of the original features
# + shortest path
self.edge_encoder = nn.Embedding(config.num_edges + 1, config.num_attention_heads, padding_idx=0)
self.edge_type = config.edge_type
if self.edge_type == "multi_hop":
self.edge_dis_encoder = nn.Embedding(
config.num_edge_dis * config.num_attention_heads * config.num_attention_heads,
1,
)
self.spatial_pos_encoder = nn.Embedding(config.num_spatial, config.num_attention_heads, padding_idx=0)
self.graph_token_virtual_distance = nn.Embedding(1, config.num_attention_heads)
def forward(
self,
input_nodes: torch.LongTensor,
attn_bias: torch.Tensor,
spatial_pos: torch.LongTensor,
input_edges: torch.LongTensor,
attn_edge_type: torch.LongTensor,
) -> torch.Tensor:
n_graph, n_node = input_nodes.size()[:2]
graph_attn_bias = attn_bias.clone()
graph_attn_bias = graph_attn_bias.unsqueeze(1).repeat(
1, self.num_heads, 1, 1
) # [n_graph, n_head, n_node+1, n_node+1]
# spatial pos
# [n_graph, n_node, n_node, n_head] -> [n_graph, n_head, n_node, n_node]
spatial_pos_bias = self.spatial_pos_encoder(spatial_pos).permute(0, 3, 1, 2)
graph_attn_bias[:, :, 1:, 1:] = graph_attn_bias[:, :, 1:, 1:] + spatial_pos_bias
# reset spatial pos here
t = self.graph_token_virtual_distance.weight.view(1, self.num_heads, 1)
graph_attn_bias[:, :, 1:, 0] = graph_attn_bias[:, :, 1:, 0] + t
graph_attn_bias[:, :, 0, :] = graph_attn_bias[:, :, 0, :] + t
# edge feature
if self.edge_type == "multi_hop":
spatial_pos_ = spatial_pos.clone()
spatial_pos_[spatial_pos_ == 0] = 1 # set pad to 1
# set 1 to 1, input_nodes > 1 to input_nodes - 1
spatial_pos_ = torch.where(spatial_pos_ > 1, spatial_pos_ - 1, spatial_pos_)
if self.multi_hop_max_dist > 0:
spatial_pos_ = spatial_pos_.clamp(0, self.multi_hop_max_dist)
input_edges = input_edges[:, :, :, : self.multi_hop_max_dist, :]
# [n_graph, n_node, n_node, max_dist, n_head]
input_edges = self.edge_encoder(input_edges).mean(-2)
max_dist = input_edges.size(-2)
edge_input_flat = input_edges.permute(3, 0, 1, 2, 4).reshape(max_dist, -1, self.num_heads)
edge_input_flat = torch.bmm(
edge_input_flat,
self.edge_dis_encoder.weight.reshape(-1, self.num_heads, self.num_heads)[:max_dist, :, :],
)
input_edges = edge_input_flat.reshape(max_dist, n_graph, n_node, n_node, self.num_heads).permute(
1, 2, 3, 0, 4
)
input_edges = (input_edges.sum(-2) / (spatial_pos_.float().unsqueeze(-1))).permute(0, 3, 1, 2)
else:
# [n_graph, n_node, n_node, n_head] -> [n_graph, n_head, n_node, n_node]
input_edges = self.edge_encoder(attn_edge_type).mean(-2).permute(0, 3, 1, 2)
graph_attn_bias[:, :, 1:, 1:] = graph_attn_bias[:, :, 1:, 1:] + input_edges
graph_attn_bias = graph_attn_bias + attn_bias.unsqueeze(1) # reset
return graph_attn_bias
class GraphormerMultiheadAttention(nn.Module):
"""Multi-headed attention.
See "Attention Is All You Need" for more details.
"""
def __init__(self, config: GraphormerConfig):
super().__init__()
self.embedding_dim = config.embedding_dim
self.kdim = config.kdim if config.kdim is not None else config.embedding_dim
self.vdim = config.vdim if config.vdim is not None else config.embedding_dim
self.qkv_same_dim = self.kdim == config.embedding_dim and self.vdim == config.embedding_dim
self.num_heads = config.num_attention_heads
self.dropout_module = torch.nn.Dropout(p=config.dropout, inplace=False)
self.head_dim = config.embedding_dim // config.num_attention_heads
if not (self.head_dim * config.num_attention_heads == self.embedding_dim):
raise AssertionError("The embedding_dim must be divisible by num_heads.")
self.scaling = self.head_dim**-0.5
self.self_attention = True # config.self_attention
if not (self.self_attention):
raise NotImplementedError("The Graphormer model only supports self attention for now.")
if self.self_attention and not self.qkv_same_dim:
raise AssertionError("Self-attention requires query, key and value to be of the same size.")
self.k_proj = quant_noise(
nn.Linear(self.kdim, config.embedding_dim, bias=config.bias),
config.q_noise,
config.qn_block_size,
)
self.v_proj = quant_noise(
nn.Linear(self.vdim, config.embedding_dim, bias=config.bias),
config.q_noise,
config.qn_block_size,
)
self.q_proj = quant_noise(
nn.Linear(config.embedding_dim, config.embedding_dim, bias=config.bias),
config.q_noise,
config.qn_block_size,
)
self.out_proj = quant_noise(
nn.Linear(config.embedding_dim, config.embedding_dim, bias=config.bias),
config.q_noise,
config.qn_block_size,
)
self.onnx_trace = False
def reset_parameters(self):
if self.qkv_same_dim:
# Empirically observed the convergence to be much better with
# the scaled initialization
nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
else:
nn.init.xavier_uniform_(self.k_proj.weight)
nn.init.xavier_uniform_(self.v_proj.weight)
nn.init.xavier_uniform_(self.q_proj.weight)
nn.init.xavier_uniform_(self.out_proj.weight)
if self.out_proj.bias is not None:
nn.init.constant_(self.out_proj.bias, 0.0)
def forward(
self,
query: torch.LongTensor,
key: Optional[torch.Tensor],
value: Optional[torch.Tensor],
attn_bias: Optional[torch.Tensor],
key_padding_mask: Optional[torch.Tensor] = None,
need_weights: bool = True,
attn_mask: Optional[torch.Tensor] = None,
before_softmax: bool = False,
need_head_weights: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""
Args:
key_padding_mask (Bytetorch.Tensor, optional): mask to exclude
keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s.
need_weights (bool, optional): return the attention weights,
averaged over heads (default: False).
attn_mask (Bytetorch.Tensor, optional): typically used to
implement causal attention, where the mask prevents the attention from looking forward in time
(default: None).
before_softmax (bool, optional): return the raw attention
weights and values before the attention softmax.
need_head_weights (bool, optional): return the attention
weights for each head. Implies *need_weights*. Default: return the average attention weights over all
heads.
"""
if need_head_weights:
need_weights = True
tgt_len, bsz, embedding_dim = query.size()
src_len = tgt_len
if not (embedding_dim == self.embedding_dim):
raise AssertionError(
f"The query embedding dimension {embedding_dim} is not equal to the expected embedding_dim"
f" {self.embedding_dim}."
)
if not (list(query.size()) == [tgt_len, bsz, embedding_dim]):
raise AssertionError("Query size incorrect in Graphormer, compared to model dimensions.")
if key is not None:
src_len, key_bsz, _ = key.size()
if not torch.jit.is_scripting():
if (key_bsz != bsz) or (value is None) or not (src_len, bsz == value.shape[:2]):
raise AssertionError(
"The batch shape does not match the key or value shapes provided to the attention."
)
q = self.q_proj(query)
k = self.k_proj(query)
v = self.v_proj(query)
q *= self.scaling
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1)
if k is not None:
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
if v is not None:
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
if (k is None) or not (k.size(1) == src_len):
raise AssertionError("The shape of the key generated in the attention is incorrect")
# This is part of a workaround to get around fork/join parallelism
# not supporting Optional types.
if key_padding_mask is not None and key_padding_mask.dim() == 0:
key_padding_mask = None
if key_padding_mask is not None:
if key_padding_mask.size(0) != bsz or key_padding_mask.size(1) != src_len:
raise AssertionError(
"The shape of the generated padding mask for the key does not match expected dimensions."
)
attn_weights = torch.bmm(q, k.transpose(1, 2))
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
if list(attn_weights.size()) != [bsz * self.num_heads, tgt_len, src_len]:
raise AssertionError("The attention weights generated do not match the expected dimensions.")
if attn_bias is not None:
attn_weights += attn_bias.view(bsz * self.num_heads, tgt_len, src_len)
if attn_mask is not None:
attn_mask = attn_mask.unsqueeze(0)
attn_weights += attn_mask
if key_padding_mask is not None:
# don't attend to padding symbols
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf")
)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if before_softmax:
return attn_weights, v
attn_weights_float = torch.nn.functional.softmax(attn_weights, dim=-1)
attn_weights = attn_weights_float.type_as(attn_weights)
attn_probs = self.dropout_module(attn_weights)
if v is None:
raise AssertionError("No value generated")
attn = torch.bmm(attn_probs, v)
if list(attn.size()) != [bsz * self.num_heads, tgt_len, self.head_dim]:
raise AssertionError("The attention generated do not match the expected dimensions.")
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embedding_dim)
attn: torch.Tensor = self.out_proj(attn)
attn_weights = None
if need_weights:
attn_weights = attn_weights_float.contiguous().view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0)
if not need_head_weights:
# average attention weights over heads
attn_weights = attn_weights.mean(dim=0)
return attn, attn_weights
def apply_sparse_mask(self, attn_weights: torch.Tensor, tgt_len: int, src_len: int, bsz: int) -> torch.Tensor:
return attn_weights
class GraphormerGraphEncoderLayer(nn.Module):
def __init__(self, config: GraphormerConfig) -> None:
super().__init__()
# Initialize parameters
self.embedding_dim = config.embedding_dim
self.num_attention_heads = config.num_attention_heads
self.attention_dropout = config.attention_dropout
self.q_noise = config.q_noise
self.qn_block_size = config.qn_block_size
self.pre_layernorm = config.pre_layernorm
self.dropout_module = torch.nn.Dropout(p=config.dropout, inplace=False)
self.activation_dropout_module = torch.nn.Dropout(p=config.dropout, inplace=False)
# Initialize blocks
self.activation_fn = ACT2FN[config.activation_fn]
self.self_attn = GraphormerMultiheadAttention(config)
# layer norm associated with the self attention layer
self.self_attn_layer_norm = nn.LayerNorm(self.embedding_dim)
self.fc1 = self.build_fc(
self.embedding_dim,
config.ffn_embedding_dim,
q_noise=config.q_noise,
qn_block_size=config.qn_block_size,
)
self.fc2 = self.build_fc(
config.ffn_embedding_dim,
self.embedding_dim,
q_noise=config.q_noise,
qn_block_size=config.qn_block_size,
)
# layer norm associated with the position wise feed-forward NN
self.final_layer_norm = nn.LayerNorm(self.embedding_dim)
def build_fc(
self, input_dim: int, output_dim: int, q_noise: float, qn_block_size: int
) -> Union[nn.Module, nn.Linear, nn.Embedding, nn.Conv2d]:
return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size)
def forward(
self,
input_nodes: torch.Tensor,
self_attn_bias: Optional[torch.Tensor] = None,
self_attn_mask: Optional[torch.Tensor] = None,
self_attn_padding_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""
nn.LayerNorm is applied either before or after the self-attention/ffn modules similar to the original
Transformer implementation.
"""
residual = input_nodes
if self.pre_layernorm:
input_nodes = self.self_attn_layer_norm(input_nodes)
input_nodes, attn = self.self_attn(
query=input_nodes,
key=input_nodes,
value=input_nodes,
attn_bias=self_attn_bias,
key_padding_mask=self_attn_padding_mask,
need_weights=False,
attn_mask=self_attn_mask,
)
input_nodes = self.dropout_module(input_nodes)
input_nodes = residual + input_nodes
if not self.pre_layernorm:
input_nodes = self.self_attn_layer_norm(input_nodes)
residual = input_nodes
if self.pre_layernorm:
input_nodes = self.final_layer_norm(input_nodes)
input_nodes = self.activation_fn(self.fc1(input_nodes))
input_nodes = self.activation_dropout_module(input_nodes)
input_nodes = self.fc2(input_nodes)
input_nodes = self.dropout_module(input_nodes)
input_nodes = residual + input_nodes
if not self.pre_layernorm:
input_nodes = self.final_layer_norm(input_nodes)
return input_nodes, attn
class GraphormerGraphEncoder(nn.Module):
def __init__(self, config: GraphormerConfig):
super().__init__()
self.dropout_module = torch.nn.Dropout(p=config.dropout, inplace=False)
self.layerdrop = config.layerdrop
self.embedding_dim = config.embedding_dim
self.apply_graphormer_init = config.apply_graphormer_init
self.traceable = config.traceable
self.graph_node_feature = GraphormerGraphNodeFeature(config)
self.graph_attn_bias = GraphormerGraphAttnBias(config)
self.embed_scale = config.embed_scale
if config.q_noise > 0:
self.quant_noise = quant_noise(
nn.Linear(self.embedding_dim, self.embedding_dim, bias=False),
config.q_noise,
config.qn_block_size,
)
else:
self.quant_noise = None
if config.encoder_normalize_before:
self.emb_layer_norm = nn.LayerNorm(self.embedding_dim)
else:
self.emb_layer_norm = None
if config.pre_layernorm:
self.final_layer_norm = nn.LayerNorm(self.embedding_dim)
if self.layerdrop > 0.0:
self.layers = LayerDropModuleList(p=self.layerdrop)
else:
self.layers = nn.ModuleList([])
self.layers.extend([GraphormerGraphEncoderLayer(config) for _ in range(config.num_hidden_layers)])
# Apply initialization of model params after building the model
if config.freeze_embeddings:
raise NotImplementedError("Freezing embeddings is not implemented yet.")
for layer in range(config.num_trans_layers_to_freeze):
m = self.layers[layer]
if m is not None:
for p in m.parameters():
p.requires_grad = False
def forward(
self,
input_nodes: torch.LongTensor,
input_edges: torch.LongTensor,
attn_bias: torch.Tensor,
in_degree: torch.LongTensor,
out_degree: torch.LongTensor,
spatial_pos: torch.LongTensor,
attn_edge_type: torch.LongTensor,
perturb=None,
last_state_only: bool = False,
token_embeddings: Optional[torch.Tensor] = None,
attn_mask: Optional[torch.Tensor] = None,
) -> Tuple[Union[torch.Tensor, List[torch.LongTensor]], torch.Tensor]:
# compute padding mask. This is needed for multi-head attention
data_x = input_nodes
n_graph, n_node = data_x.size()[:2]
padding_mask = (data_x[:, :, 0]).eq(0)
padding_mask_cls = torch.zeros(n_graph, 1, device=padding_mask.device, dtype=padding_mask.dtype)
padding_mask = torch.cat((padding_mask_cls, padding_mask), dim=1)
attn_bias = self.graph_attn_bias(input_nodes, attn_bias, spatial_pos, input_edges, attn_edge_type)
if token_embeddings is not None:
input_nodes = token_embeddings
else:
input_nodes = self.graph_node_feature(input_nodes, in_degree, out_degree)
if perturb is not None:
input_nodes[:, 1:, :] += perturb
if self.embed_scale is not None:
input_nodes = input_nodes * self.embed_scale
if self.quant_noise is not None:
input_nodes = self.quant_noise(input_nodes)
if self.emb_layer_norm is not None:
input_nodes = self.emb_layer_norm(input_nodes)
input_nodes = self.dropout_module(input_nodes)
input_nodes = input_nodes.transpose(0, 1)
inner_states = []
if not last_state_only:
inner_states.append(input_nodes)
for layer in self.layers:
input_nodes, _ = layer(
input_nodes,
self_attn_padding_mask=padding_mask,
self_attn_mask=attn_mask,
self_attn_bias=attn_bias,
)
if not last_state_only:
inner_states.append(input_nodes)
graph_rep = input_nodes[0, :, :]
if last_state_only:
inner_states = [input_nodes]
if self.traceable:
return torch.stack(inner_states), graph_rep
else:
return inner_states, graph_rep
class GraphormerDecoderHead(nn.Module):
def __init__(self, embedding_dim: int, num_classes: int):
super().__init__()
"""num_classes should be 1 for regression, or the number of classes for classification"""
self.lm_output_learned_bias = nn.Parameter(torch.zeros(1))
self.classifier = nn.Linear(embedding_dim, num_classes, bias=False)
self.num_classes = num_classes
def forward(self, input_nodes: torch.Tensor, **unused) -> torch.Tensor:
input_nodes = self.classifier(input_nodes)
input_nodes = input_nodes + self.lm_output_learned_bias
return input_nodes
class GraphormerPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GraphormerConfig
base_model_prefix = "graphormer"
supports_gradient_checkpointing = True
main_input_name_nodes = "input_nodes"
main_input_name_edges = "input_edges"
def normal_(self, data: torch.Tensor):
# with FSDP, module params will be on CUDA, so we cast them back to CPU
# so that the RNG is consistent with and without FSDP
data.copy_(data.cpu().normal_(mean=0.0, std=0.02).to(data.device))
def init_graphormer_params(self, module: Union[nn.Linear, nn.Embedding, GraphormerMultiheadAttention]):
"""
Initialize the weights specific to the Graphormer Model.
"""
if isinstance(module, nn.Linear):
self.normal_(module.weight.data)
if module.bias is not None:
module.bias.data.zero_()
if isinstance(module, nn.Embedding):
self.normal_(module.weight.data)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if isinstance(module, GraphormerMultiheadAttention):
self.normal_(module.q_proj.weight.data)
self.normal_(module.k_proj.weight.data)
self.normal_(module.v_proj.weight.data)
def _init_weights(
self,
module: Union[
nn.Linear, nn.Conv2d, nn.Embedding, nn.LayerNorm, GraphormerMultiheadAttention, GraphormerGraphEncoder
],
):
"""
Initialize the weights
"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# We might be missing part of the Linear init, dependant on the layer num
module.weight.data.normal_(mean=0.0, std=0.02)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=0.02)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, GraphormerMultiheadAttention):
module.q_proj.weight.data.normal_(mean=0.0, std=0.02)
module.k_proj.weight.data.normal_(mean=0.0, std=0.02)
module.v_proj.weight.data.normal_(mean=0.0, std=0.02)
module.reset_parameters()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, GraphormerGraphEncoder):
if module.apply_graphormer_init:
module.apply(self.init_graphormer_params)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, GraphormerModel):
module.gradient_checkpointing = value
class GraphormerModel(GraphormerPreTrainedModel):
"""The Graphormer model is a graph-encoder model.
It goes from a graph to its representation. If you want to use the model for a downstream classification task, use
GraphormerForGraphClassification instead. For any other downstream task, feel free to add a new class, or combine
this model with a downstream model of your choice, following the example in GraphormerForGraphClassification.
"""
def __init__(self, config: GraphormerConfig):
super().__init__(config)
self.max_nodes = config.max_nodes
self.graph_encoder = GraphormerGraphEncoder(config)
self.share_input_output_embed = config.share_input_output_embed
self.lm_output_learned_bias = None
# Remove head is set to true during fine-tuning
self.load_softmax = not getattr(config, "remove_head", False)
self.lm_head_transform_weight = nn.Linear(config.embedding_dim, config.embedding_dim)
self.activation_fn = ACT2FN[config.activation_fn]
self.layer_norm = nn.LayerNorm(config.embedding_dim)
self.post_init()
def reset_output_layer_parameters(self):
self.lm_output_learned_bias = nn.Parameter(torch.zeros(1))
def forward(
self,
input_nodes: torch.LongTensor,
input_edges: torch.LongTensor,
attn_bias: torch.Tensor,
in_degree: torch.LongTensor,
out_degree: torch.LongTensor,
spatial_pos: torch.LongTensor,
attn_edge_type: torch.LongTensor,
perturb=None,
masked_tokens=None,
return_dict: Optional[bool] = None,
**unused,
) -> Union[Tuple[torch.LongTensor], BaseModelOutputWithNoAttention]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
inner_states, graph_rep = self.graph_encoder(
input_nodes, input_edges, attn_bias, in_degree, out_degree, spatial_pos, attn_edge_type, perturb=perturb
)
# last inner state, then revert Batch and Graph len
input_nodes = inner_states[-1].transpose(0, 1)
# project masked tokens only
if masked_tokens is not None:
raise NotImplementedError
input_nodes = self.layer_norm(self.activation_fn(self.lm_head_transform_weight(input_nodes)))
# project back to size of vocabulary
if self.share_input_output_embed and hasattr(self.graph_encoder.embed_tokens, "weight"):
input_nodes = torch.nn.functional.linear(input_nodes, self.graph_encoder.embed_tokens.weight)
if not return_dict:
return tuple(x for x in [input_nodes, inner_states] if x is not None)
return BaseModelOutputWithNoAttention(last_hidden_state=input_nodes, hidden_states=inner_states)
def max_nodes(self):
"""Maximum output length supported by the encoder."""
return self.max_nodes
class GraphormerForGraphClassification(GraphormerPreTrainedModel):
"""
This model can be used for graph-level classification or regression tasks.
It can be trained on
- regression (by setting config.num_classes to 1); there should be one float-type label per graph
- one task classification (by setting config.num_classes to the number of classes); there should be one integer
label per graph
- binary multi-task classification (by setting config.num_classes to the number of labels); there should be a list
of integer labels for each graph.
"""
def __init__(self, config: GraphormerConfig):
super().__init__(config)
self.encoder = GraphormerModel(config)
self.embedding_dim = config.embedding_dim
self.num_classes = config.num_classes
self.classifier = GraphormerDecoderHead(self.embedding_dim, self.num_classes)
self.is_encoder_decoder = True
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_nodes: torch.LongTensor,
input_edges: torch.LongTensor,
attn_bias: torch.Tensor,
in_degree: torch.LongTensor,
out_degree: torch.LongTensor,
spatial_pos: torch.LongTensor,
attn_edge_type: torch.LongTensor,
labels: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None,
**unused,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_outputs = self.encoder(
input_nodes,
input_edges,
attn_bias,
in_degree,
out_degree,
spatial_pos,
attn_edge_type,
return_dict=True,
)
outputs, hidden_states = encoder_outputs["last_hidden_state"], encoder_outputs["hidden_states"]
head_outputs = self.classifier(outputs)
logits = head_outputs[:, 0, :].contiguous()
loss = None
if labels is not None:
mask = ~torch.isnan(labels)
if self.num_classes == 1: # regression
loss_fct = MSELoss()
loss = loss_fct(logits[mask].squeeze(), labels[mask].squeeze().float())
elif self.num_classes > 1 and len(labels.shape) == 1: # One task classification
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits[mask].view(-1, self.num_classes), labels[mask].view(-1))
else: # Binary multi-task classification
loss_fct = BCEWithLogitsLoss(reduction="sum")
loss = loss_fct(logits[mask], labels[mask])
if not return_dict:
return tuple(x for x in [loss, logits, hidden_states] if x is not None)
return SequenceClassifierOutput(loss=loss, logits=logits, hidden_states=hidden_states, attentions=None)