Create configuration_graphormer.pyx
Browse files- configuration_graphormer.pyx +216 -0
configuration_graphormer.pyx
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Microsoft, clefourrier and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Graphormer model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
24 |
+
# pcqm4mv1 now deprecated
|
25 |
+
"graphormer-base": "https://huggingface.co/clefourrier/graphormer-base-pcqm4mv2/resolve/main/config.json",
|
26 |
+
# See all Graphormer models at https://huggingface.co/models?filter=graphormer
|
27 |
+
}
|
28 |
+
|
29 |
+
|
30 |
+
class GraphormerConfig(PretrainedConfig):
|
31 |
+
r"""
|
32 |
+
This is the configuration class to store the configuration of a [`~GraphormerModel`]. It is used to instantiate an
|
33 |
+
Graphormer model according to the specified arguments, defining the model architecture. Instantiating a
|
34 |
+
configuration with the defaults will yield a similar configuration to that of the Graphormer
|
35 |
+
[graphormer-base-pcqm4mv1](https://huggingface.co/graphormer-base-pcqm4mv1) architecture.
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
|
41 |
+
Args:
|
42 |
+
num_classes (`int`, *optional*, defaults to 1):
|
43 |
+
Number of target classes or labels, set to n for binary classification of n tasks.
|
44 |
+
num_atoms (`int`, *optional*, defaults to 512*9):
|
45 |
+
Number of node types in the graphs.
|
46 |
+
num_edges (`int`, *optional*, defaults to 512*3):
|
47 |
+
Number of edges types in the graph.
|
48 |
+
num_in_degree (`int`, *optional*, defaults to 512):
|
49 |
+
Number of in degrees types in the input graphs.
|
50 |
+
num_out_degree (`int`, *optional*, defaults to 512):
|
51 |
+
Number of out degrees types in the input graphs.
|
52 |
+
num_edge_dis (`int`, *optional*, defaults to 128):
|
53 |
+
Number of edge dis in the input graphs.
|
54 |
+
multi_hop_max_dist (`int`, *optional*, defaults to 20):
|
55 |
+
Maximum distance of multi hop edges between two nodes.
|
56 |
+
spatial_pos_max (`int`, *optional*, defaults to 1024):
|
57 |
+
Maximum distance between nodes in the graph attention bias matrices, used during preprocessing and
|
58 |
+
collation.
|
59 |
+
edge_type (`str`, *optional*, defaults to multihop):
|
60 |
+
Type of edge relation chosen.
|
61 |
+
max_nodes (`int`, *optional*, defaults to 512):
|
62 |
+
Maximum number of nodes which can be parsed for the input graphs.
|
63 |
+
share_input_output_embed (`bool`, *optional*, defaults to `False`):
|
64 |
+
Shares the embedding layer between encoder and decoder - careful, True is not implemented.
|
65 |
+
num_layers (`int`, *optional*, defaults to 12):
|
66 |
+
Number of layers.
|
67 |
+
embedding_dim (`int`, *optional*, defaults to 768):
|
68 |
+
Dimension of the embedding layer in encoder.
|
69 |
+
ffn_embedding_dim (`int`, *optional*, defaults to 768):
|
70 |
+
Dimension of the "intermediate" (often named feed-forward) layer in encoder.
|
71 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
72 |
+
Number of attention heads in the encoder.
|
73 |
+
self_attention (`bool`, *optional*, defaults to `True`):
|
74 |
+
Model is self attentive (False not implemented).
|
75 |
+
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
76 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
77 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
78 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
79 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
80 |
+
attention_dropout (`float`, *optional*, defaults to 0.1):
|
81 |
+
The dropout probability for the attention weights.
|
82 |
+
layerdrop (`float`, *optional*, defaults to 0.0):
|
83 |
+
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
84 |
+
for more details.
|
85 |
+
bias (`bool`, *optional*, defaults to `True`):
|
86 |
+
Uses bias in the attention module - unsupported at the moment.
|
87 |
+
embed_scale(`float`, *optional*, defaults to None):
|
88 |
+
Scaling factor for the node embeddings.
|
89 |
+
num_trans_layers_to_freeze (`int`, *optional*, defaults to 0):
|
90 |
+
Number of transformer layers to freeze.
|
91 |
+
encoder_normalize_before (`bool`, *optional*, defaults to `False`):
|
92 |
+
Normalize features before encoding the graph.
|
93 |
+
pre_layernorm (`bool`, *optional*, defaults to `False`):
|
94 |
+
Apply layernorm before self attention and the feed forward network. Without this, post layernorm will be
|
95 |
+
used.
|
96 |
+
apply_graphormer_init (`bool`, *optional*, defaults to `False`):
|
97 |
+
Apply a custom graphormer initialisation to the model before training.
|
98 |
+
freeze_embeddings (`bool`, *optional*, defaults to `False`):
|
99 |
+
Freeze the embedding layer, or train it along the model.
|
100 |
+
encoder_normalize_before (`bool`, *optional*, defaults to `False`):
|
101 |
+
Apply the layer norm before each encoder block.
|
102 |
+
q_noise (`float`, *optional*, defaults to 0.0):
|
103 |
+
Amount of quantization noise (see "Training with Quantization Noise for Extreme Model Compression"). (For
|
104 |
+
more detail, see fairseq's documentation on quant_noise).
|
105 |
+
qn_block_size (`int`, *optional*, defaults to 8):
|
106 |
+
Size of the blocks for subsequent quantization with iPQ (see q_noise).
|
107 |
+
kdim (`int`, *optional*, defaults to None):
|
108 |
+
Dimension of the key in the attention, if different from the other values.
|
109 |
+
vdim (`int`, *optional*, defaults to None):
|
110 |
+
Dimension of the value in the attention, if different from the other values.
|
111 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
112 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
113 |
+
traceable (`bool`, *optional*, defaults to `False`):
|
114 |
+
Changes return value of the encoder's inner_state to stacked tensors.
|
115 |
+
|
116 |
+
Example:
|
117 |
+
```python
|
118 |
+
>>> from transformers import GraphormerForGraphClassification, GraphormerConfig
|
119 |
+
|
120 |
+
>>> # Initializing a Graphormer graphormer-base-pcqm4mv2 style configuration
|
121 |
+
>>> configuration = GraphormerConfig()
|
122 |
+
|
123 |
+
>>> # Initializing a model from the graphormer-base-pcqm4mv1 style configuration
|
124 |
+
>>> model = GraphormerForGraphClassification(configuration)
|
125 |
+
|
126 |
+
>>> # Accessing the model configuration
|
127 |
+
>>> configuration = model.config
|
128 |
+
```
|
129 |
+
"""
|
130 |
+
model_type = "graphormer"
|
131 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
132 |
+
|
133 |
+
def __init__(
|
134 |
+
self,
|
135 |
+
num_classes: int = 1,
|
136 |
+
num_atoms: int = 512 * 9,
|
137 |
+
num_edges: int = 512 * 3,
|
138 |
+
num_in_degree: int = 512,
|
139 |
+
num_out_degree: int = 512,
|
140 |
+
num_spatial: int = 512,
|
141 |
+
num_edge_dis: int = 128,
|
142 |
+
multi_hop_max_dist: int = 5, # sometimes is 20
|
143 |
+
spatial_pos_max: int = 1024,
|
144 |
+
edge_type: str = "multi_hop",
|
145 |
+
max_nodes: int = 512,
|
146 |
+
share_input_output_embed: bool = False,
|
147 |
+
num_hidden_layers: int = 12,
|
148 |
+
embedding_dim: int = 768,
|
149 |
+
ffn_embedding_dim: int = 768,
|
150 |
+
num_attention_heads: int = 32,
|
151 |
+
dropout: float = 0.1,
|
152 |
+
attention_dropout: float = 0.1,
|
153 |
+
layerdrop: float = 0.0,
|
154 |
+
encoder_normalize_before: bool = False,
|
155 |
+
pre_layernorm: bool = False,
|
156 |
+
apply_graphormer_init: bool = False,
|
157 |
+
activation_fn: str = "gelu",
|
158 |
+
embed_scale: float = None,
|
159 |
+
freeze_embeddings: bool = False,
|
160 |
+
num_trans_layers_to_freeze: int = 0,
|
161 |
+
traceable: bool = False,
|
162 |
+
q_noise: float = 0.0,
|
163 |
+
qn_block_size: int = 8,
|
164 |
+
kdim: int = None,
|
165 |
+
vdim: int = None,
|
166 |
+
bias: bool = True,
|
167 |
+
self_attention: bool = True,
|
168 |
+
pad_token_id=0,
|
169 |
+
bos_token_id=1,
|
170 |
+
eos_token_id=2,
|
171 |
+
**kwargs,
|
172 |
+
):
|
173 |
+
self.num_classes = num_classes
|
174 |
+
self.num_atoms = num_atoms
|
175 |
+
self.num_in_degree = num_in_degree
|
176 |
+
self.num_out_degree = num_out_degree
|
177 |
+
self.num_edges = num_edges
|
178 |
+
self.num_spatial = num_spatial
|
179 |
+
self.num_edge_dis = num_edge_dis
|
180 |
+
self.edge_type = edge_type
|
181 |
+
self.multi_hop_max_dist = multi_hop_max_dist
|
182 |
+
self.spatial_pos_max = spatial_pos_max
|
183 |
+
self.max_nodes = max_nodes
|
184 |
+
self.num_hidden_layers = num_hidden_layers
|
185 |
+
self.embedding_dim = embedding_dim
|
186 |
+
self.hidden_size = embedding_dim
|
187 |
+
self.ffn_embedding_dim = ffn_embedding_dim
|
188 |
+
self.num_attention_heads = num_attention_heads
|
189 |
+
self.dropout = dropout
|
190 |
+
self.attention_dropout = attention_dropout
|
191 |
+
self.layerdrop = layerdrop
|
192 |
+
self.encoder_normalize_before = encoder_normalize_before
|
193 |
+
self.pre_layernorm = pre_layernorm
|
194 |
+
self.apply_graphormer_init = apply_graphormer_init
|
195 |
+
self.activation_fn = activation_fn
|
196 |
+
self.embed_scale = embed_scale
|
197 |
+
self.freeze_embeddings = freeze_embeddings
|
198 |
+
self.num_trans_layers_to_freeze = num_trans_layers_to_freeze
|
199 |
+
self.share_input_output_embed = share_input_output_embed
|
200 |
+
self.traceable = traceable
|
201 |
+
self.q_noise = q_noise
|
202 |
+
self.qn_block_size = qn_block_size
|
203 |
+
|
204 |
+
# These parameters are here for future extensions
|
205 |
+
# atm, the model only supports self attention
|
206 |
+
self.kdim = kdim
|
207 |
+
self.vdim = vdim
|
208 |
+
self.self_attention = self_attention
|
209 |
+
self.bias = bias
|
210 |
+
|
211 |
+
super().__init__(
|
212 |
+
pad_token_id=pad_token_id,
|
213 |
+
bos_token_id=bos_token_id,
|
214 |
+
eos_token_id=eos_token_id,
|
215 |
+
**kwargs,
|
216 |
+
)
|