# coding=utf-8 # Copyright 2022 Microsoft, clefourrier The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Graphormer model.""" import math from typing import Iterable, Iterator, List, Optional, Tuple, Union import torch import torch.nn as nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithNoAttention, SequenceClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_graphormer import GraphormerConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "graphormer-base-pcqm4mv1" _CONFIG_FOR_DOC = "GraphormerConfig" GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "clefourrier/graphormer-base-pcqm4mv1", "clefourrier/graphormer-base-pcqm4mv2", # See all Graphormer models at https://huggingface.co/models?filter=graphormer ] def quant_noise(module: nn.Module, p: float, block_size: int): """ From: https://github.com/facebookresearch/fairseq/blob/dd0079bde7f678b0cd0715cbd0ae68d661b7226d/fairseq/modules/quant_noise.py Wraps modules and applies quantization noise to the weights for subsequent quantization with Iterative Product Quantization as described in "Training with Quantization Noise for Extreme Model Compression" Args: - module: nn.Module - p: amount of Quantization Noise - block_size: size of the blocks for subsequent quantization with iPQ Remarks: - Module weights must have the right sizes wrt the block size - Only Linear, Embedding and Conv2d modules are supported for the moment - For more detail on how to quantize by blocks with convolutional weights, see "And the Bit Goes Down: Revisiting the Quantization of Neural Networks" - We implement the simplest form of noise here as stated in the paper which consists in randomly dropping blocks """ # if no quantization noise, don't register hook if p <= 0: return module # supported modules if not isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d)): raise NotImplementedError("Module unsupported for quant_noise.") # test whether module.weight has the right sizes wrt block_size is_conv = module.weight.ndim == 4 # 2D matrix if not is_conv: if module.weight.size(1) % block_size != 0: raise AssertionError("Input features must be a multiple of block sizes") # 4D matrix else: # 1x1 convolutions if module.kernel_size == (1, 1): if module.in_channels % block_size != 0: raise AssertionError("Input channels must be a multiple of block sizes") # regular convolutions else: k = module.kernel_size[0] * module.kernel_size[1] if k % block_size != 0: raise AssertionError("Kernel size must be a multiple of block size") def _forward_pre_hook(mod, input): # no noise for evaluation if mod.training: if not is_conv: # gather weight and sizes weight = mod.weight in_features = weight.size(1) out_features = weight.size(0) # split weight matrix into blocks and randomly drop selected blocks mask = torch.zeros(in_features // block_size * out_features, device=weight.device) mask.bernoulli_(p) mask = mask.repeat_interleave(block_size, -1).view(-1, in_features) else: # gather weight and sizes weight = mod.weight in_channels = mod.in_channels out_channels = mod.out_channels # split weight matrix into blocks and randomly drop selected blocks if mod.kernel_size == (1, 1): mask = torch.zeros( int(in_channels // block_size * out_channels), device=weight.device, ) mask.bernoulli_(p) mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels) else: mask = torch.zeros(weight.size(0), weight.size(1), device=weight.device) mask.bernoulli_(p) mask = mask.unsqueeze(2).unsqueeze(3).repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1]) # scale weights and apply mask mask = mask.to(torch.bool) # x.bool() is not currently supported in TorchScript s = 1 / (1 - p) mod.weight.data = s * weight.masked_fill(mask, 0) module.register_forward_pre_hook(_forward_pre_hook) return module class LayerDropModuleList(nn.ModuleList): """ From: https://github.com/facebookresearch/fairseq/blob/dd0079bde7f678b0cd0715cbd0ae68d661b7226d/fairseq/modules/layer_drop.py A LayerDrop implementation based on [`torch.nn.ModuleList`]. LayerDrop as described in https://arxiv.org/abs/1909.11556. We refresh the choice of which layers to drop every time we iterate over the LayerDropModuleList instance. During evaluation we always iterate over all layers. Usage: ```python layers = LayerDropList(p=0.5, modules=[layer1, layer2, layer3]) for layer in layers: # this might iterate over layers 1 and 3 x = layer(x) for layer in layers: # this might iterate over all layers x = layer(x) for layer in layers: # this might not iterate over any layers x = layer(x) ``` Args: p (float): probability of dropping out each layer modules (iterable, optional): an iterable of modules to add """ def __init__(self, p: float, modules: Optional[Iterable[nn.Module]] = None): super().__init__(modules) self.p = p def __iter__(self) -> Iterator[nn.Module]: dropout_probs = torch.empty(len(self)).uniform_() for i, m in enumerate(super().__iter__()): if not self.training or (dropout_probs[i] > self.p): yield m class GraphormerGraphNodeFeature(nn.Module): """ Compute node features for each node in the graph. """ def __init__(self, config: GraphormerConfig): super().__init__() self.num_heads = config.num_attention_heads self.num_atoms = config.num_atoms self.atom_encoder = nn.Embedding(config.num_atoms + 1, config.hidden_size, padding_idx=config.pad_token_id) self.in_degree_encoder = nn.Embedding( config.num_in_degree, config.hidden_size, padding_idx=config.pad_token_id ) self.out_degree_encoder = nn.Embedding( config.num_out_degree, config.hidden_size, padding_idx=config.pad_token_id ) self.graph_token = nn.Embedding(1, config.hidden_size) def forward( self, input_nodes: torch.LongTensor, in_degree: torch.LongTensor, out_degree: torch.LongTensor, ) -> torch.Tensor: n_graph, n_node = input_nodes.size()[:2] node_feature = ( # node feature + graph token self.atom_encoder(input_nodes).sum(dim=-2) # [n_graph, n_node, n_hidden] + self.in_degree_encoder(in_degree) + self.out_degree_encoder(out_degree) ) graph_token_feature = self.graph_token.weight.unsqueeze(0).repeat(n_graph, 1, 1) graph_node_feature = torch.cat([graph_token_feature, node_feature], dim=1) return graph_node_feature class GraphormerGraphAttnBias(nn.Module): """ Compute attention bias for each head. """ def __init__(self, config: GraphormerConfig): super().__init__() self.num_heads = config.num_attention_heads self.multi_hop_max_dist = config.multi_hop_max_dist # We do not change edge feature embedding learning, as edge embeddings are represented as a combination of the original features # + shortest path self.edge_encoder = nn.Embedding(config.num_edges + 1, config.num_attention_heads, padding_idx=0) self.edge_type = config.edge_type if self.edge_type == "multi_hop": self.edge_dis_encoder = nn.Embedding( config.num_edge_dis * config.num_attention_heads * config.num_attention_heads, 1, ) self.spatial_pos_encoder = nn.Embedding(config.num_spatial, config.num_attention_heads, padding_idx=0) self.graph_token_virtual_distance = nn.Embedding(1, config.num_attention_heads) def forward( self, input_nodes: torch.LongTensor, attn_bias: torch.Tensor, spatial_pos: torch.LongTensor, input_edges: torch.LongTensor, attn_edge_type: torch.LongTensor, ) -> torch.Tensor: n_graph, n_node = input_nodes.size()[:2] graph_attn_bias = attn_bias.clone() graph_attn_bias = graph_attn_bias.unsqueeze(1).repeat( 1, self.num_heads, 1, 1 ) # [n_graph, n_head, n_node+1, n_node+1] # spatial pos # [n_graph, n_node, n_node, n_head] -> [n_graph, n_head, n_node, n_node] spatial_pos_bias = self.spatial_pos_encoder(spatial_pos).permute(0, 3, 1, 2) graph_attn_bias[:, :, 1:, 1:] = graph_attn_bias[:, :, 1:, 1:] + spatial_pos_bias # reset spatial pos here t = self.graph_token_virtual_distance.weight.view(1, self.num_heads, 1) graph_attn_bias[:, :, 1:, 0] = graph_attn_bias[:, :, 1:, 0] + t graph_attn_bias[:, :, 0, :] = graph_attn_bias[:, :, 0, :] + t # edge feature if self.edge_type == "multi_hop": spatial_pos_ = spatial_pos.clone() spatial_pos_[spatial_pos_ == 0] = 1 # set pad to 1 # set 1 to 1, input_nodes > 1 to input_nodes - 1 spatial_pos_ = torch.where(spatial_pos_ > 1, spatial_pos_ - 1, spatial_pos_) if self.multi_hop_max_dist > 0: spatial_pos_ = spatial_pos_.clamp(0, self.multi_hop_max_dist) input_edges = input_edges[:, :, :, : self.multi_hop_max_dist, :] # [n_graph, n_node, n_node, max_dist, n_head] input_edges = self.edge_encoder(input_edges).mean(-2) max_dist = input_edges.size(-2) edge_input_flat = input_edges.permute(3, 0, 1, 2, 4).reshape(max_dist, -1, self.num_heads) edge_input_flat = torch.bmm( edge_input_flat, self.edge_dis_encoder.weight.reshape(-1, self.num_heads, self.num_heads)[:max_dist, :, :], ) input_edges = edge_input_flat.reshape(max_dist, n_graph, n_node, n_node, self.num_heads).permute( 1, 2, 3, 0, 4 ) input_edges = (input_edges.sum(-2) / (spatial_pos_.float().unsqueeze(-1))).permute(0, 3, 1, 2) else: # [n_graph, n_node, n_node, n_head] -> [n_graph, n_head, n_node, n_node] input_edges = self.edge_encoder(attn_edge_type).mean(-2).permute(0, 3, 1, 2) graph_attn_bias[:, :, 1:, 1:] = graph_attn_bias[:, :, 1:, 1:] + input_edges graph_attn_bias = graph_attn_bias + attn_bias.unsqueeze(1) # reset return graph_attn_bias class GraphormerMultiheadAttention(nn.Module): """Multi-headed attention. See "Attention Is All You Need" for more details. """ def __init__(self, config: GraphormerConfig): super().__init__() self.embedding_dim = config.embedding_dim self.kdim = config.kdim if config.kdim is not None else config.embedding_dim self.vdim = config.vdim if config.vdim is not None else config.embedding_dim self.qkv_same_dim = self.kdim == config.embedding_dim and self.vdim == config.embedding_dim self.num_heads = config.num_attention_heads self.dropout_module = torch.nn.Dropout(p=config.dropout, inplace=False) self.head_dim = config.embedding_dim // config.num_attention_heads if not (self.head_dim * config.num_attention_heads == self.embedding_dim): raise AssertionError("The embedding_dim must be divisible by num_heads.") self.scaling = self.head_dim**-0.5 self.self_attention = True # config.self_attention if not (self.self_attention): raise NotImplementedError("The Graphormer model only supports self attention for now.") if self.self_attention and not self.qkv_same_dim: raise AssertionError("Self-attention requires query, key and value to be of the same size.") self.k_proj = quant_noise( nn.Linear(self.kdim, config.embedding_dim, bias=config.bias), config.q_noise, config.qn_block_size, ) self.v_proj = quant_noise( nn.Linear(self.vdim, config.embedding_dim, bias=config.bias), config.q_noise, config.qn_block_size, ) self.q_proj = quant_noise( nn.Linear(config.embedding_dim, config.embedding_dim, bias=config.bias), config.q_noise, config.qn_block_size, ) self.out_proj = quant_noise( nn.Linear(config.embedding_dim, config.embedding_dim, bias=config.bias), config.q_noise, config.qn_block_size, ) self.onnx_trace = False def reset_parameters(self): if self.qkv_same_dim: # Empirically observed the convergence to be much better with # the scaled initialization nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) else: nn.init.xavier_uniform_(self.k_proj.weight) nn.init.xavier_uniform_(self.v_proj.weight) nn.init.xavier_uniform_(self.q_proj.weight) nn.init.xavier_uniform_(self.out_proj.weight) if self.out_proj.bias is not None: nn.init.constant_(self.out_proj.bias, 0.0) def forward( self, query: torch.LongTensor, key: Optional[torch.Tensor], value: Optional[torch.Tensor], attn_bias: Optional[torch.Tensor], key_padding_mask: Optional[torch.Tensor] = None, need_weights: bool = True, attn_mask: Optional[torch.Tensor] = None, before_softmax: bool = False, need_head_weights: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """ Args: key_padding_mask (Bytetorch.Tensor, optional): mask to exclude keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. need_weights (bool, optional): return the attention weights, averaged over heads (default: False). attn_mask (Bytetorch.Tensor, optional): typically used to implement causal attention, where the mask prevents the attention from looking forward in time (default: None). before_softmax (bool, optional): return the raw attention weights and values before the attention softmax. need_head_weights (bool, optional): return the attention weights for each head. Implies *need_weights*. Default: return the average attention weights over all heads. """ if need_head_weights: need_weights = True tgt_len, bsz, embedding_dim = query.size() src_len = tgt_len if not (embedding_dim == self.embedding_dim): raise AssertionError( f"The query embedding dimension {embedding_dim} is not equal to the expected embedding_dim" f" {self.embedding_dim}." ) if not (list(query.size()) == [tgt_len, bsz, embedding_dim]): raise AssertionError("Query size incorrect in Graphormer, compared to model dimensions.") if key is not None: src_len, key_bsz, _ = key.size() if not torch.jit.is_scripting(): if (key_bsz != bsz) or (value is None) or not (src_len, bsz == value.shape[:2]): raise AssertionError( "The batch shape does not match the key or value shapes provided to the attention." ) q = self.q_proj(query) k = self.k_proj(query) v = self.v_proj(query) q *= self.scaling q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1) if k is not None: k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) if v is not None: v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) if (k is None) or not (k.size(1) == src_len): raise AssertionError("The shape of the key generated in the attention is incorrect") # This is part of a workaround to get around fork/join parallelism # not supporting Optional types. if key_padding_mask is not None and key_padding_mask.dim() == 0: key_padding_mask = None if key_padding_mask is not None: if key_padding_mask.size(0) != bsz or key_padding_mask.size(1) != src_len: raise AssertionError( "The shape of the generated padding mask for the key does not match expected dimensions." ) attn_weights = torch.bmm(q, k.transpose(1, 2)) attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) if list(attn_weights.size()) != [bsz * self.num_heads, tgt_len, src_len]: raise AssertionError("The attention weights generated do not match the expected dimensions.") if attn_bias is not None: attn_weights += attn_bias.view(bsz * self.num_heads, tgt_len, src_len) if attn_mask is not None: attn_mask = attn_mask.unsqueeze(0) attn_weights += attn_mask if key_padding_mask is not None: # don't attend to padding symbols attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf") ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if before_softmax: return attn_weights, v attn_weights_float = torch.nn.functional.softmax(attn_weights, dim=-1) attn_weights = attn_weights_float.type_as(attn_weights) attn_probs = self.dropout_module(attn_weights) if v is None: raise AssertionError("No value generated") attn = torch.bmm(attn_probs, v) if list(attn.size()) != [bsz * self.num_heads, tgt_len, self.head_dim]: raise AssertionError("The attention generated do not match the expected dimensions.") attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embedding_dim) attn: torch.Tensor = self.out_proj(attn) attn_weights = None if need_weights: attn_weights = attn_weights_float.contiguous().view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0) if not need_head_weights: # average attention weights over heads attn_weights = attn_weights.mean(dim=0) return attn, attn_weights def apply_sparse_mask(self, attn_weights: torch.Tensor, tgt_len: int, src_len: int, bsz: int) -> torch.Tensor: return attn_weights class GraphormerGraphEncoderLayer(nn.Module): def __init__(self, config: GraphormerConfig) -> None: super().__init__() # Initialize parameters self.embedding_dim = config.embedding_dim self.num_attention_heads = config.num_attention_heads self.attention_dropout = config.attention_dropout self.q_noise = config.q_noise self.qn_block_size = config.qn_block_size self.pre_layernorm = config.pre_layernorm self.dropout_module = torch.nn.Dropout(p=config.dropout, inplace=False) self.activation_dropout_module = torch.nn.Dropout(p=config.dropout, inplace=False) # Initialize blocks self.activation_fn = ACT2FN[config.activation_fn] self.self_attn = GraphormerMultiheadAttention(config) # layer norm associated with the self attention layer self.self_attn_layer_norm = nn.LayerNorm(self.embedding_dim) self.fc1 = self.build_fc( self.embedding_dim, config.ffn_embedding_dim, q_noise=config.q_noise, qn_block_size=config.qn_block_size, ) self.fc2 = self.build_fc( config.ffn_embedding_dim, self.embedding_dim, q_noise=config.q_noise, qn_block_size=config.qn_block_size, ) # layer norm associated with the position wise feed-forward NN self.final_layer_norm = nn.LayerNorm(self.embedding_dim) def build_fc( self, input_dim: int, output_dim: int, q_noise: float, qn_block_size: int ) -> Union[nn.Module, nn.Linear, nn.Embedding, nn.Conv2d]: return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size) def forward( self, input_nodes: torch.Tensor, self_attn_bias: Optional[torch.Tensor] = None, self_attn_mask: Optional[torch.Tensor] = None, self_attn_padding_mask: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """ nn.LayerNorm is applied either before or after the self-attention/ffn modules similar to the original Transformer implementation. """ residual = input_nodes if self.pre_layernorm: input_nodes = self.self_attn_layer_norm(input_nodes) input_nodes, attn = self.self_attn( query=input_nodes, key=input_nodes, value=input_nodes, attn_bias=self_attn_bias, key_padding_mask=self_attn_padding_mask, need_weights=False, attn_mask=self_attn_mask, ) input_nodes = self.dropout_module(input_nodes) input_nodes = residual + input_nodes if not self.pre_layernorm: input_nodes = self.self_attn_layer_norm(input_nodes) residual = input_nodes if self.pre_layernorm: input_nodes = self.final_layer_norm(input_nodes) input_nodes = self.activation_fn(self.fc1(input_nodes)) input_nodes = self.activation_dropout_module(input_nodes) input_nodes = self.fc2(input_nodes) input_nodes = self.dropout_module(input_nodes) input_nodes = residual + input_nodes if not self.pre_layernorm: input_nodes = self.final_layer_norm(input_nodes) return input_nodes, attn class GraphormerGraphEncoder(nn.Module): def __init__(self, config: GraphormerConfig): super().__init__() self.dropout_module = torch.nn.Dropout(p=config.dropout, inplace=False) self.layerdrop = config.layerdrop self.embedding_dim = config.embedding_dim self.apply_graphormer_init = config.apply_graphormer_init self.traceable = config.traceable self.graph_node_feature = GraphormerGraphNodeFeature(config) self.graph_attn_bias = GraphormerGraphAttnBias(config) self.embed_scale = config.embed_scale if config.q_noise > 0: self.quant_noise = quant_noise( nn.Linear(self.embedding_dim, self.embedding_dim, bias=False), config.q_noise, config.qn_block_size, ) else: self.quant_noise = None if config.encoder_normalize_before: self.emb_layer_norm = nn.LayerNorm(self.embedding_dim) else: self.emb_layer_norm = None if config.pre_layernorm: self.final_layer_norm = nn.LayerNorm(self.embedding_dim) if self.layerdrop > 0.0: self.layers = LayerDropModuleList(p=self.layerdrop) else: self.layers = nn.ModuleList([]) self.layers.extend([GraphormerGraphEncoderLayer(config) for _ in range(config.num_hidden_layers)]) # Apply initialization of model params after building the model if config.freeze_embeddings: raise NotImplementedError("Freezing embeddings is not implemented yet.") for layer in range(config.num_trans_layers_to_freeze): m = self.layers[layer] if m is not None: for p in m.parameters(): p.requires_grad = False def forward( self, input_nodes: torch.LongTensor, input_edges: torch.LongTensor, attn_bias: torch.Tensor, in_degree: torch.LongTensor, out_degree: torch.LongTensor, spatial_pos: torch.LongTensor, attn_edge_type: torch.LongTensor, perturb=None, last_state_only: bool = False, token_embeddings: Optional[torch.Tensor] = None, attn_mask: Optional[torch.Tensor] = None, ) -> Tuple[Union[torch.Tensor, List[torch.LongTensor]], torch.Tensor]: # compute padding mask. This is needed for multi-head attention data_x = input_nodes n_graph, n_node = data_x.size()[:2] padding_mask = (data_x[:, :, 0]).eq(0) padding_mask_cls = torch.zeros(n_graph, 1, device=padding_mask.device, dtype=padding_mask.dtype) padding_mask = torch.cat((padding_mask_cls, padding_mask), dim=1) attn_bias = self.graph_attn_bias(input_nodes, attn_bias, spatial_pos, input_edges, attn_edge_type) if token_embeddings is not None: input_nodes = token_embeddings else: input_nodes = self.graph_node_feature(input_nodes, in_degree, out_degree) if perturb is not None: input_nodes[:, 1:, :] += perturb if self.embed_scale is not None: input_nodes = input_nodes * self.embed_scale if self.quant_noise is not None: input_nodes = self.quant_noise(input_nodes) if self.emb_layer_norm is not None: input_nodes = self.emb_layer_norm(input_nodes) input_nodes = self.dropout_module(input_nodes) input_nodes = input_nodes.transpose(0, 1) inner_states = [] if not last_state_only: inner_states.append(input_nodes) for layer in self.layers: input_nodes, _ = layer( input_nodes, self_attn_padding_mask=padding_mask, self_attn_mask=attn_mask, self_attn_bias=attn_bias, ) if not last_state_only: inner_states.append(input_nodes) graph_rep = input_nodes[0, :, :] if last_state_only: inner_states = [input_nodes] if self.traceable: return torch.stack(inner_states), graph_rep else: return inner_states, graph_rep class GraphormerDecoderHead(nn.Module): def __init__(self, embedding_dim: int, num_classes: int): super().__init__() """num_classes should be 1 for regression, or the number of classes for classification""" self.lm_output_learned_bias = nn.Parameter(torch.zeros(1)) self.classifier = nn.Linear(embedding_dim, num_classes, bias=False) self.num_classes = num_classes def forward(self, input_nodes: torch.Tensor, **unused) -> torch.Tensor: input_nodes = self.classifier(input_nodes) input_nodes = input_nodes + self.lm_output_learned_bias return input_nodes class GraphormerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GraphormerConfig base_model_prefix = "graphormer" supports_gradient_checkpointing = True main_input_name_nodes = "input_nodes" main_input_name_edges = "input_edges" def normal_(self, data: torch.Tensor): # with FSDP, module params will be on CUDA, so we cast them back to CPU # so that the RNG is consistent with and without FSDP data.copy_(data.cpu().normal_(mean=0.0, std=0.02).to(data.device)) def init_graphormer_params(self, module: Union[nn.Linear, nn.Embedding, GraphormerMultiheadAttention]): """ Initialize the weights specific to the Graphormer Model. """ if isinstance(module, nn.Linear): self.normal_(module.weight.data) if module.bias is not None: module.bias.data.zero_() if isinstance(module, nn.Embedding): self.normal_(module.weight.data) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() if isinstance(module, GraphormerMultiheadAttention): self.normal_(module.q_proj.weight.data) self.normal_(module.k_proj.weight.data) self.normal_(module.v_proj.weight.data) def _init_weights( self, module: Union[ nn.Linear, nn.Conv2d, nn.Embedding, nn.LayerNorm, GraphormerMultiheadAttention, GraphormerGraphEncoder ], ): """ Initialize the weights """ if isinstance(module, (nn.Linear, nn.Conv2d)): # We might be missing part of the Linear init, dependant on the layer num module.weight.data.normal_(mean=0.0, std=0.02) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=0.02) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, GraphormerMultiheadAttention): module.q_proj.weight.data.normal_(mean=0.0, std=0.02) module.k_proj.weight.data.normal_(mean=0.0, std=0.02) module.v_proj.weight.data.normal_(mean=0.0, std=0.02) module.reset_parameters() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, GraphormerGraphEncoder): if module.apply_graphormer_init: module.apply(self.init_graphormer_params) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, GraphormerModel): module.gradient_checkpointing = value class GraphormerModel(GraphormerPreTrainedModel): """The Graphormer model is a graph-encoder model. It goes from a graph to its representation. If you want to use the model for a downstream classification task, use GraphormerForGraphClassification instead. For any other downstream task, feel free to add a new class, or combine this model with a downstream model of your choice, following the example in GraphormerForGraphClassification. """ def __init__(self, config: GraphormerConfig): super().__init__(config) self.max_nodes = config.max_nodes self.graph_encoder = GraphormerGraphEncoder(config) self.share_input_output_embed = config.share_input_output_embed self.lm_output_learned_bias = None # Remove head is set to true during fine-tuning self.load_softmax = not getattr(config, "remove_head", False) self.lm_head_transform_weight = nn.Linear(config.embedding_dim, config.embedding_dim) self.activation_fn = ACT2FN[config.activation_fn] self.layer_norm = nn.LayerNorm(config.embedding_dim) self.post_init() def reset_output_layer_parameters(self): self.lm_output_learned_bias = nn.Parameter(torch.zeros(1)) def forward( self, input_nodes: torch.LongTensor, input_edges: torch.LongTensor, attn_bias: torch.Tensor, in_degree: torch.LongTensor, out_degree: torch.LongTensor, spatial_pos: torch.LongTensor, attn_edge_type: torch.LongTensor, perturb=None, masked_tokens=None, return_dict: Optional[bool] = None, **unused, ) -> Union[Tuple[torch.LongTensor], BaseModelOutputWithNoAttention]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict inner_states, graph_rep = self.graph_encoder( input_nodes, input_edges, attn_bias, in_degree, out_degree, spatial_pos, attn_edge_type, perturb=perturb ) # last inner state, then revert Batch and Graph len input_nodes = inner_states[-1].transpose(0, 1) # project masked tokens only if masked_tokens is not None: raise NotImplementedError input_nodes = self.layer_norm(self.activation_fn(self.lm_head_transform_weight(input_nodes))) # project back to size of vocabulary if self.share_input_output_embed and hasattr(self.graph_encoder.embed_tokens, "weight"): input_nodes = torch.nn.functional.linear(input_nodes, self.graph_encoder.embed_tokens.weight) if not return_dict: return tuple(x for x in [input_nodes, inner_states] if x is not None) return BaseModelOutputWithNoAttention(last_hidden_state=input_nodes, hidden_states=inner_states) def max_nodes(self): """Maximum output length supported by the encoder.""" return self.max_nodes class GraphormerForGraphClassification(GraphormerPreTrainedModel): """ This model can be used for graph-level classification or regression tasks. It can be trained on - regression (by setting config.num_classes to 1); there should be one float-type label per graph - one task classification (by setting config.num_classes to the number of classes); there should be one integer label per graph - binary multi-task classification (by setting config.num_classes to the number of labels); there should be a list of integer labels for each graph. """ def __init__(self, config: GraphormerConfig): super().__init__(config) self.encoder = GraphormerModel(config) self.embedding_dim = config.embedding_dim self.num_classes = config.num_classes self.classifier = GraphormerDecoderHead(self.embedding_dim, self.num_classes) self.is_encoder_decoder = True # Initialize weights and apply final processing self.post_init() def forward( self, input_nodes: torch.LongTensor, input_edges: torch.LongTensor, attn_bias: torch.Tensor, in_degree: torch.LongTensor, out_degree: torch.LongTensor, spatial_pos: torch.LongTensor, attn_edge_type: torch.LongTensor, labels: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None, **unused, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_outputs = self.encoder( input_nodes, input_edges, attn_bias, in_degree, out_degree, spatial_pos, attn_edge_type, return_dict=True, ) outputs, hidden_states = encoder_outputs["last_hidden_state"], encoder_outputs["hidden_states"] head_outputs = self.classifier(outputs) logits = head_outputs[:, 0, :].contiguous() loss = None if labels is not None: mask = ~torch.isnan(labels) if self.num_classes == 1: # regression loss_fct = MSELoss() loss = loss_fct(logits[mask].squeeze(), labels[mask].squeeze().float()) elif self.num_classes > 1 and len(labels.shape) == 1: # One task classification loss_fct = CrossEntropyLoss() loss = loss_fct(logits[mask].view(-1, self.num_classes), labels[mask].view(-1)) else: # Binary multi-task classification loss_fct = BCEWithLogitsLoss(reduction="sum") loss = loss_fct(logits[mask], labels[mask]) if not return_dict: return tuple(x for x in [loss, logits, hidden_states] if x is not None) return SequenceClassifierOutput(loss=loss, logits=logits, hidden_states=hidden_states, attentions=None)