Upload 10 files
Browse files- README.md +220 -0
- added_tokens.json +4 -0
- config.json +225 -0
- merges.txt +0 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +0 -0
- tokenizer_config.json +17 -0
- training_args.bin +3 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: span-marker
|
3 |
+
tags:
|
4 |
+
- span-marker
|
5 |
+
- token-classification
|
6 |
+
- ner
|
7 |
+
- named-entity-recognition
|
8 |
+
- generated_from_span_marker_trainer
|
9 |
+
metrics:
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
- f1
|
13 |
+
widget:
|
14 |
+
- text: The Bengal tiger is the most common subspecies of tiger, constituting approximately
|
15 |
+
80% of the entire tiger population, and is found in Bangladesh, Bhutan, Myanmar,
|
16 |
+
Nepal, and India.
|
17 |
+
- text: In other countries, it is a non-commissioned rank (e.g. Spain, Italy, France,
|
18 |
+
the Netherlands and the Indonesian Police ranks).
|
19 |
+
- text: The filling consists of fish, pork and bacon, and is seasoned with salt (unless
|
20 |
+
the pork is already salted).
|
21 |
+
- text: This stood until August 20, 1993 when it was beaten by one 1 / 100th of a
|
22 |
+
second by Colin Jackson of Great Britain in Stuttgart, Germany, a subsequent record
|
23 |
+
that stood for 13 years.
|
24 |
+
- text: Ann Patchett ’s novel " Bel Canto ", was another creative influence that helped
|
25 |
+
her manage a plentiful cast of characters.
|
26 |
+
pipeline_tag: token-classification
|
27 |
+
model-index:
|
28 |
+
- name: SpanMarker
|
29 |
+
results:
|
30 |
+
- task:
|
31 |
+
type: token-classification
|
32 |
+
name: Named Entity Recognition
|
33 |
+
dataset:
|
34 |
+
name: Unknown
|
35 |
+
type: unknown
|
36 |
+
split: eval
|
37 |
+
metrics:
|
38 |
+
- type: f1
|
39 |
+
value: 0.9130661114003124
|
40 |
+
name: F1
|
41 |
+
- type: precision
|
42 |
+
value: 0.9148758606300855
|
43 |
+
name: Precision
|
44 |
+
- type: recall
|
45 |
+
value: 0.9112635078969243
|
46 |
+
name: Recall
|
47 |
+
---
|
48 |
+
|
49 |
+
# SpanMarker
|
50 |
+
|
51 |
+
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition.
|
52 |
+
|
53 |
+
## Model Details
|
54 |
+
|
55 |
+
### Model Description
|
56 |
+
- **Model Type:** SpanMarker
|
57 |
+
<!-- - **Encoder:** [Unknown](https://huggingface.co/unknown) -->
|
58 |
+
- **Maximum Sequence Length:** 256 tokens
|
59 |
+
- **Maximum Entity Length:** 6 words
|
60 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
61 |
+
<!-- - **Language:** Unknown -->
|
62 |
+
<!-- - **License:** Unknown -->
|
63 |
+
|
64 |
+
### Model Sources
|
65 |
+
|
66 |
+
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
|
67 |
+
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
|
68 |
+
|
69 |
+
### Model Labels
|
70 |
+
| Label | Examples |
|
71 |
+
|:------|:-------------------------------------------------------------------------|
|
72 |
+
| ANIM | "vertebrate", "moth", "G. firmus" |
|
73 |
+
| BIO | "Aspergillus", "Cladophora", "Zythiostroma" |
|
74 |
+
| CEL | "pulsar", "celestial bodies", "neutron star" |
|
75 |
+
| DIS | "social anxiety disorder", "insulin resistance", "Asperger syndrome" |
|
76 |
+
| EVE | "Spanish Civil War", "National Junior Angus Show", "French Revolution" |
|
77 |
+
| FOOD | "Neera", "Bellini ( cocktail )", "soju" |
|
78 |
+
| INST | "Apple II", "Encyclopaedia of Chess Openings", "Android" |
|
79 |
+
| LOC | "Kīlauea", "Hungary", "Vienna" |
|
80 |
+
| MEDIA | "CSI : Crime Scene Investigation", "Big Comic Spirits", "American Idol" |
|
81 |
+
| MYTH | "Priam", "Oźwiena", "Odysseus" |
|
82 |
+
| ORG | "San Francisco Giants", "Arm Holdings", "RTÉ One" |
|
83 |
+
| PER | "Amelia Bence", "Tito Lusiardo", "James Cameron" |
|
84 |
+
| PLANT | "vernal squill", "Sarracenia purpurea", "Drosera rotundifolia" |
|
85 |
+
| TIME | "prehistory", "Age of Enlightenment", "annual paid holiday" |
|
86 |
+
| VEHI | "Short 360", "Ferrari 355 Challenge", "Solution F / Chretien Helicopter" |
|
87 |
+
|
88 |
+
## Uses
|
89 |
+
|
90 |
+
### Direct Use for Inference
|
91 |
+
|
92 |
+
```python
|
93 |
+
from span_marker import SpanMarkerModel
|
94 |
+
|
95 |
+
# Download from the 🤗 Hub
|
96 |
+
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
|
97 |
+
# Run inference
|
98 |
+
entities = model.predict("Ann Patchett ’s novel \" Bel Canto \", was another creative influence that helped her manage a plentiful cast of characters.")
|
99 |
+
```
|
100 |
+
|
101 |
+
### Downstream Use
|
102 |
+
You can finetune this model on your own dataset.
|
103 |
+
|
104 |
+
<details><summary>Click to expand</summary>
|
105 |
+
|
106 |
+
```python
|
107 |
+
from span_marker import SpanMarkerModel, Trainer
|
108 |
+
|
109 |
+
# Download from the 🤗 Hub
|
110 |
+
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
|
111 |
+
|
112 |
+
# Specify a Dataset with "tokens" and "ner_tag" columns
|
113 |
+
dataset = load_dataset("conll2003") # For example CoNLL2003
|
114 |
+
|
115 |
+
# Initialize a Trainer using the pretrained model & dataset
|
116 |
+
trainer = Trainer(
|
117 |
+
model=model,
|
118 |
+
train_dataset=dataset["train"],
|
119 |
+
eval_dataset=dataset["validation"],
|
120 |
+
)
|
121 |
+
trainer.train()
|
122 |
+
trainer.save_model("span_marker_model_id-finetuned")
|
123 |
+
```
|
124 |
+
</details>
|
125 |
+
|
126 |
+
<!--
|
127 |
+
### Out-of-Scope Use
|
128 |
+
|
129 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
130 |
+
-->
|
131 |
+
|
132 |
+
<!--
|
133 |
+
## Bias, Risks and Limitations
|
134 |
+
|
135 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
136 |
+
-->
|
137 |
+
|
138 |
+
<!--
|
139 |
+
### Recommendations
|
140 |
+
|
141 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
142 |
+
-->
|
143 |
+
|
144 |
+
## Training Details
|
145 |
+
|
146 |
+
### Training Set Metrics
|
147 |
+
| Training set | Min | Median | Max |
|
148 |
+
|:----------------------|:----|:--------|:----|
|
149 |
+
| Sentence length | 2 | 21.6493 | 237 |
|
150 |
+
| Entities per sentence | 0 | 1.5369 | 36 |
|
151 |
+
|
152 |
+
### Training Hyperparameters
|
153 |
+
- learning_rate: 1e-05
|
154 |
+
- train_batch_size: 16
|
155 |
+
- eval_batch_size: 16
|
156 |
+
- seed: 42
|
157 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
158 |
+
- lr_scheduler_type: linear
|
159 |
+
- lr_scheduler_warmup_ratio: 0.1
|
160 |
+
- num_epochs: 1
|
161 |
+
- mixed_precision_training: Native AMP
|
162 |
+
|
163 |
+
### Training Results
|
164 |
+
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|
165 |
+
|:------:|:-----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
|
166 |
+
| 0.0576 | 1000 | 0.0142 | 0.8714 | 0.7729 | 0.8192 | 0.9698 |
|
167 |
+
| 0.1153 | 2000 | 0.0107 | 0.8316 | 0.8815 | 0.8558 | 0.9744 |
|
168 |
+
| 0.1729 | 3000 | 0.0092 | 0.8717 | 0.8797 | 0.8757 | 0.9780 |
|
169 |
+
| 0.2306 | 4000 | 0.0082 | 0.8811 | 0.8886 | 0.8848 | 0.9798 |
|
170 |
+
| 0.2882 | 5000 | 0.0084 | 0.8523 | 0.9163 | 0.8831 | 0.9790 |
|
171 |
+
| 0.3459 | 6000 | 0.0079 | 0.8700 | 0.9113 | 0.8902 | 0.9802 |
|
172 |
+
| 0.4035 | 7000 | 0.0070 | 0.9107 | 0.8859 | 0.8981 | 0.9822 |
|
173 |
+
| 0.4611 | 8000 | 0.0069 | 0.9259 | 0.8797 | 0.9022 | 0.9827 |
|
174 |
+
| 0.5188 | 9000 | 0.0067 | 0.9061 | 0.8965 | 0.9013 | 0.9829 |
|
175 |
+
| 0.5764 | 10000 | 0.0066 | 0.9034 | 0.8996 | 0.9015 | 0.9829 |
|
176 |
+
| 0.6341 | 11000 | 0.0064 | 0.9160 | 0.8996 | 0.9077 | 0.9839 |
|
177 |
+
| 0.6917 | 12000 | 0.0066 | 0.8952 | 0.9121 | 0.9036 | 0.9832 |
|
178 |
+
| 0.7494 | 13000 | 0.0062 | 0.9165 | 0.9009 | 0.9086 | 0.9841 |
|
179 |
+
| 0.8070 | 14000 | 0.0062 | 0.9010 | 0.9121 | 0.9065 | 0.9835 |
|
180 |
+
| 0.8647 | 15000 | 0.0062 | 0.9084 | 0.9127 | 0.9105 | 0.9842 |
|
181 |
+
| 0.9223 | 16000 | 0.0060 | 0.9151 | 0.9098 | 0.9125 | 0.9846 |
|
182 |
+
| 0.9799 | 17000 | 0.0060 | 0.9149 | 0.9113 | 0.9131 | 0.9848 |
|
183 |
+
|
184 |
+
### Framework Versions
|
185 |
+
- Python: 3.8.16
|
186 |
+
- SpanMarker: 1.5.0
|
187 |
+
- Transformers: 4.29.0.dev0
|
188 |
+
- PyTorch: 1.10.1
|
189 |
+
- Datasets: 2.15.0
|
190 |
+
- Tokenizers: 0.13.2
|
191 |
+
|
192 |
+
## Citation
|
193 |
+
|
194 |
+
### BibTeX
|
195 |
+
```
|
196 |
+
@software{Aarsen_SpanMarker,
|
197 |
+
author = {Aarsen, Tom},
|
198 |
+
license = {Apache-2.0},
|
199 |
+
title = {{SpanMarker for Named Entity Recognition}},
|
200 |
+
url = {https://github.com/tomaarsen/SpanMarkerNER}
|
201 |
+
}
|
202 |
+
```
|
203 |
+
|
204 |
+
<!--
|
205 |
+
## Glossary
|
206 |
+
|
207 |
+
*Clearly define terms in order to be accessible across audiences.*
|
208 |
+
-->
|
209 |
+
|
210 |
+
<!--
|
211 |
+
## Model Card Authors
|
212 |
+
|
213 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
214 |
+
-->
|
215 |
+
|
216 |
+
<!--
|
217 |
+
## Model Card Contact
|
218 |
+
|
219 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
220 |
+
-->
|
added_tokens.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<end>": 50266,
|
3 |
+
"<start>": 50265
|
4 |
+
}
|
config.json
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"SpanMarkerModel"
|
4 |
+
],
|
5 |
+
"encoder": {
|
6 |
+
"_name_or_path": "roberta-base",
|
7 |
+
"add_cross_attention": false,
|
8 |
+
"architectures": [
|
9 |
+
"RobertaForMaskedLM"
|
10 |
+
],
|
11 |
+
"attention_probs_dropout_prob": 0.1,
|
12 |
+
"bad_words_ids": null,
|
13 |
+
"begin_suppress_tokens": null,
|
14 |
+
"bos_token_id": 0,
|
15 |
+
"chunk_size_feed_forward": 0,
|
16 |
+
"classifier_dropout": null,
|
17 |
+
"cross_attention_hidden_size": null,
|
18 |
+
"decoder_start_token_id": null,
|
19 |
+
"diversity_penalty": 0.0,
|
20 |
+
"do_sample": false,
|
21 |
+
"early_stopping": false,
|
22 |
+
"encoder_no_repeat_ngram_size": 0,
|
23 |
+
"eos_token_id": 2,
|
24 |
+
"exponential_decay_length_penalty": null,
|
25 |
+
"finetuning_task": null,
|
26 |
+
"forced_bos_token_id": null,
|
27 |
+
"forced_eos_token_id": null,
|
28 |
+
"hidden_act": "gelu",
|
29 |
+
"hidden_dropout_prob": 0.1,
|
30 |
+
"hidden_size": 768,
|
31 |
+
"id2label": {
|
32 |
+
"0": "O",
|
33 |
+
"1": "B-PER",
|
34 |
+
"2": "I-PER",
|
35 |
+
"3": "B-ORG",
|
36 |
+
"4": "I-ORG",
|
37 |
+
"5": "B-LOC",
|
38 |
+
"6": "I-LOC",
|
39 |
+
"7": "B-ANIM",
|
40 |
+
"8": "I-ANIM",
|
41 |
+
"9": "B-BIO",
|
42 |
+
"10": "I-BIO",
|
43 |
+
"11": "B-CEL",
|
44 |
+
"12": "I-CEL",
|
45 |
+
"13": "B-DIS",
|
46 |
+
"14": "I-DIS",
|
47 |
+
"15": "B-EVE",
|
48 |
+
"16": "I-EVE",
|
49 |
+
"17": "B-FOOD",
|
50 |
+
"18": "I-FOOD",
|
51 |
+
"19": "B-INST",
|
52 |
+
"20": "I-INST",
|
53 |
+
"21": "B-MEDIA",
|
54 |
+
"22": "I-MEDIA",
|
55 |
+
"23": "B-MYTH",
|
56 |
+
"24": "I-MYTH",
|
57 |
+
"25": "B-PLANT",
|
58 |
+
"26": "I-PLANT",
|
59 |
+
"27": "B-TIME",
|
60 |
+
"28": "I-TIME",
|
61 |
+
"29": "B-VEHI",
|
62 |
+
"30": "I-VEHI"
|
63 |
+
},
|
64 |
+
"initializer_range": 0.02,
|
65 |
+
"intermediate_size": 3072,
|
66 |
+
"is_decoder": false,
|
67 |
+
"is_encoder_decoder": false,
|
68 |
+
"label2id": {
|
69 |
+
"B-ANIM": 7,
|
70 |
+
"B-BIO": 9,
|
71 |
+
"B-CEL": 11,
|
72 |
+
"B-DIS": 13,
|
73 |
+
"B-EVE": 15,
|
74 |
+
"B-FOOD": 17,
|
75 |
+
"B-INST": 19,
|
76 |
+
"B-LOC": 5,
|
77 |
+
"B-MEDIA": 21,
|
78 |
+
"B-MYTH": 23,
|
79 |
+
"B-ORG": 3,
|
80 |
+
"B-PER": 1,
|
81 |
+
"B-PLANT": 25,
|
82 |
+
"B-TIME": 27,
|
83 |
+
"B-VEHI": 29,
|
84 |
+
"I-ANIM": 8,
|
85 |
+
"I-BIO": 10,
|
86 |
+
"I-CEL": 12,
|
87 |
+
"I-DIS": 14,
|
88 |
+
"I-EVE": 16,
|
89 |
+
"I-FOOD": 18,
|
90 |
+
"I-INST": 20,
|
91 |
+
"I-LOC": 6,
|
92 |
+
"I-MEDIA": 22,
|
93 |
+
"I-MYTH": 24,
|
94 |
+
"I-ORG": 4,
|
95 |
+
"I-PER": 2,
|
96 |
+
"I-PLANT": 26,
|
97 |
+
"I-TIME": 28,
|
98 |
+
"I-VEHI": 30,
|
99 |
+
"O": 0
|
100 |
+
},
|
101 |
+
"layer_norm_eps": 1e-05,
|
102 |
+
"length_penalty": 1.0,
|
103 |
+
"max_length": 20,
|
104 |
+
"max_position_embeddings": 514,
|
105 |
+
"min_length": 0,
|
106 |
+
"model_type": "roberta",
|
107 |
+
"no_repeat_ngram_size": 0,
|
108 |
+
"num_attention_heads": 12,
|
109 |
+
"num_beam_groups": 1,
|
110 |
+
"num_beams": 1,
|
111 |
+
"num_hidden_layers": 12,
|
112 |
+
"num_return_sequences": 1,
|
113 |
+
"output_attentions": false,
|
114 |
+
"output_hidden_states": false,
|
115 |
+
"output_scores": false,
|
116 |
+
"pad_token_id": 1,
|
117 |
+
"position_embedding_type": "absolute",
|
118 |
+
"prefix": null,
|
119 |
+
"problem_type": null,
|
120 |
+
"pruned_heads": {},
|
121 |
+
"remove_invalid_values": false,
|
122 |
+
"repetition_penalty": 1.0,
|
123 |
+
"return_dict": true,
|
124 |
+
"return_dict_in_generate": false,
|
125 |
+
"sep_token_id": null,
|
126 |
+
"suppress_tokens": null,
|
127 |
+
"task_specific_params": null,
|
128 |
+
"temperature": 1.0,
|
129 |
+
"tf_legacy_loss": false,
|
130 |
+
"tie_encoder_decoder": false,
|
131 |
+
"tie_word_embeddings": true,
|
132 |
+
"tokenizer_class": null,
|
133 |
+
"top_k": 50,
|
134 |
+
"top_p": 1.0,
|
135 |
+
"torch_dtype": null,
|
136 |
+
"torchscript": false,
|
137 |
+
"transformers_version": "4.29.0.dev0",
|
138 |
+
"type_vocab_size": 1,
|
139 |
+
"typical_p": 1.0,
|
140 |
+
"use_bfloat16": false,
|
141 |
+
"use_cache": true,
|
142 |
+
"vocab_size": 50267
|
143 |
+
},
|
144 |
+
"entity_max_length": 6,
|
145 |
+
"id2label": {
|
146 |
+
"0": "O",
|
147 |
+
"1": "ANIM",
|
148 |
+
"2": "BIO",
|
149 |
+
"3": "CEL",
|
150 |
+
"4": "DIS",
|
151 |
+
"5": "EVE",
|
152 |
+
"6": "FOOD",
|
153 |
+
"7": "INST",
|
154 |
+
"8": "LOC",
|
155 |
+
"9": "MEDIA",
|
156 |
+
"10": "MYTH",
|
157 |
+
"11": "ORG",
|
158 |
+
"12": "PER",
|
159 |
+
"13": "PLANT",
|
160 |
+
"14": "TIME",
|
161 |
+
"15": "VEHI"
|
162 |
+
},
|
163 |
+
"id2reduced_id": {
|
164 |
+
"0": 0,
|
165 |
+
"1": 12,
|
166 |
+
"2": 12,
|
167 |
+
"3": 11,
|
168 |
+
"4": 11,
|
169 |
+
"5": 8,
|
170 |
+
"6": 8,
|
171 |
+
"7": 1,
|
172 |
+
"8": 1,
|
173 |
+
"9": 2,
|
174 |
+
"10": 2,
|
175 |
+
"11": 3,
|
176 |
+
"12": 3,
|
177 |
+
"13": 4,
|
178 |
+
"14": 4,
|
179 |
+
"15": 5,
|
180 |
+
"16": 5,
|
181 |
+
"17": 6,
|
182 |
+
"18": 6,
|
183 |
+
"19": 7,
|
184 |
+
"20": 7,
|
185 |
+
"21": 9,
|
186 |
+
"22": 9,
|
187 |
+
"23": 10,
|
188 |
+
"24": 10,
|
189 |
+
"25": 13,
|
190 |
+
"26": 13,
|
191 |
+
"27": 14,
|
192 |
+
"28": 14,
|
193 |
+
"29": 15,
|
194 |
+
"30": 15
|
195 |
+
},
|
196 |
+
"label2id": {
|
197 |
+
"ANIM": 1,
|
198 |
+
"BIO": 2,
|
199 |
+
"CEL": 3,
|
200 |
+
"DIS": 4,
|
201 |
+
"EVE": 5,
|
202 |
+
"FOOD": 6,
|
203 |
+
"INST": 7,
|
204 |
+
"LOC": 8,
|
205 |
+
"MEDIA": 9,
|
206 |
+
"MYTH": 10,
|
207 |
+
"O": 0,
|
208 |
+
"ORG": 11,
|
209 |
+
"PER": 12,
|
210 |
+
"PLANT": 13,
|
211 |
+
"TIME": 14,
|
212 |
+
"VEHI": 15
|
213 |
+
},
|
214 |
+
"marker_max_length": 128,
|
215 |
+
"max_next_context": null,
|
216 |
+
"max_prev_context": null,
|
217 |
+
"model_max_length": 256,
|
218 |
+
"model_max_length_default": 512,
|
219 |
+
"model_type": "span-marker",
|
220 |
+
"span_marker_version": "1.5.0",
|
221 |
+
"torch_dtype": "float32",
|
222 |
+
"trained_with_document_context": false,
|
223 |
+
"transformers_version": "4.29.0.dev0",
|
224 |
+
"vocab_size": 50267
|
225 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9dc93bdd5f259d2792df17836946c0030d24d300a992b2ddd7325cbef92bb381
|
3 |
+
size 498758701
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": true,
|
3 |
+
"bos_token": "<s>",
|
4 |
+
"clean_up_tokenization_spaces": true,
|
5 |
+
"cls_token": "<s>",
|
6 |
+
"entity_max_length": 6,
|
7 |
+
"eos_token": "</s>",
|
8 |
+
"errors": "replace",
|
9 |
+
"marker_max_length": 128,
|
10 |
+
"mask_token": "<mask>",
|
11 |
+
"model_max_length": 256,
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"tokenizer_class": "RobertaTokenizer",
|
15 |
+
"trim_offsets": true,
|
16 |
+
"unk_token": "<unk>"
|
17 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2df4ccd3adf73377163a8dab4acb4eb632991616891f734eab96f2aed9cb50b1
|
3 |
+
size 3887
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|