File size: 4,482 Bytes
5a5316a
 
46ce709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf9cd49
46ce709
 
754aa83
46ce709
 
754aa83
46ce709
129e5cb
 
 
 
 
 
 
 
 
 
 
 
 
bf9cd49
 
129e5cb
 
 
 
bf9cd49
 
129e5cb
 
 
 
bf9cd49
 
129e5cb
 
 
 
bf9cd49
 
129e5cb
 
 
 
bf9cd49
 
129e5cb
 
 
 
bf9cd49
 
5a5316a
46ce709
30d5e95
 
 
 
bf9cd49
 
 
30d5e95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf9cd49
 
 
 
 
30d5e95
 
 
 
ba35116
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
license: apache-2.0
datasets:
- amazon_polarity
base_model: distilbert-base-uncased
model-index:
- name: distilbert-base-uncased-finetuned-emotion-balanced
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: amazon_polarity
      type: sentiment
      args: default
    metrics:
    - type: accuracy
      value: 0.94112
      name: Accuracy
    - type: loss
      value: 0.1634
      name: Loss
    - type: f1
      value: 0.9417
      name: F1
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: amazon_polarity
      type: amazon_polarity
      config: amazon_polarity
      split: test
    metrics:
    - type: accuracy
      value: 0.94112
      name: Accuracy
      verified: true
      verifyToken: >-
        eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzlmMzdhYjNmN2U0NDBkM2U5ZDgwNzc3YjE1OGE4MWUxMDY1N2U0ODc0YzllODE5ODIyMzdkOWFhNzVjYmI5MyIsInZlcnNpb24iOjF9.3nlcLa4IpPQtklp7_U9XzC__Q_JVf_cWs6JVVII8trhX5zg_q9HEyQOQs4sRf6O-lIJg8zb3mgobZDJShuSJAQ
    - type: precision
      value: 0.9321570625232675
      name: Precision
      verified: true
      verifyToken: >-
        eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjI2MDY4NGNlYjhjMGMxODBiNTc2ZjM5YzY1NjkxNTU4MDA2ZDIyY2QyZjUyZmE4YWY0N2Y1ODU5YTc2ZDM0NiIsInZlcnNpb24iOjF9.egEikTa2UyHV6SAGkHJKaa8FRwGHoZmJRCmqUQaJqeF5yxkz2V-WeCHoWDrCXsHCbXEs8UhLlyo7Lr83BPfkBg
    - type: recall
      value: 0.95149
      name: Recall
      verified: true
      verifyToken: >-
        eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2E3M2Y3MDU4ZTM2YjdlZjQ0NTY3NGYwMmQ3NTk5ZmZkZWUwZWZiZDZjNjk2ZWE5MmY4MmZiM2FmN2U2M2QyNCIsInZlcnNpb24iOjF9.4VNbiWRmSee4cxuIZ5m7bN30i4BpK7xtHQ1BF8AuFIXkWQgzOmGdX35bLhLGWW8KL3ClA4RDPVBKYCIrw0YUBw
    - type: auc
      value: 0.9849019044624999
      name: AUC
      verified: true
      verifyToken: >-
        eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTkwODk2ZTUwOTViNjBhYTU0ODk1MDA3MDY1NDkyZDc2YmRlNTQzNDE3YmE3YTVkYjNhN2JmMDAxZWQ0NjUxZSIsInZlcnNpb24iOjF9.YEr6OhqOL7QnqYqjUTQFMdkgU_uS1-vVnkJtn_-1UwSoX754UV_bL9S9KSH3DX4m5QFoRXdZxfeOocm1JbzaCA
    - type: f1
      value: 0.9417243188138998
      name: F1
      verified: true
      verifyToken: >-
        eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzIyMmViNTQ3ZGU0M2I5ZmRjOGI1OWMwZGEwYmE5OGU5YTZlZTkzZjdkOTQ4YzJmOTc2MDliMDY4NDQ1NGRlNyIsInZlcnNpb24iOjF9.p05MGHTfHTAzp4u-qfiIn6Zmh5c3TW_uwjXWgbb982pL_oCILQb6jFXqhPpWXL321fPye7qaUVbGhcTJd8sdCA
    - type: loss
      value: 0.16342754662036896
      name: loss
      verified: true
      verifyToken: >-
        eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzgxMDc4M2IxYjhkNjRhZmYyNzY1MTNkNzhmYjk2NmU1NjFiOTk1NDIzNzI1ZGU3MDYyYjQ2YmQ1NTI2N2NhMyIsInZlcnNpb24iOjF9.Zuf0nzn8XdvwRChKtE9CwJ0pgpc6Zey6oTR3jRiSkvNY2sNbo2bvAgFimGzgGYkDvRvYkTCXzCyxdb27l3QnAg
---

# distilbert-sentiment

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on a subset of the [amazon-polarity dataset](https://huggingface.co/datasets/amazon_polarity).
It achieves the following results on the evaluation set:
- Loss: 0.163
- Accuracy: 0.941
- F1_score: 0.942

## Model description

This sentiment classifier has been trained on 180_000 samples for the training set, 20_000 samples for the validation set and 20_000 samples for the test set.

## Intended uses & limitations
```python
from transformers import pipeline

# Create the pipeline
sentiment_classifier = pipeline('text-classification', model='AdamCodd/distilbert-base-uncased-finetuned-sentiment-amazon')

# Now you can use the pipeline to classify emotions
result = sentiment_classifier("This product doesn't fit me at all.")
print(result)
#[{'label': 'negative', 'score': 0.9994848966598511}]
```

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 1270
- optimizer: AdamW with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 150
- num_epochs: 2
- weight_decay: 0.01

### Training results

| key | value |
| --- | ----- |
| eval_accuracy | 0.94112 |
| eval_auc | 0.9849 |
| eval_f1_score | 0.9417 |
| eval_precision | 0.9321 |
| eval_recall | 0.95149 |
### Framework versions

- Transformers 4.34.0
- Pytorch lightning 2.0.9
- Tokenizers 0.14.0