File size: 4,482 Bytes
5a5316a 46ce709 bf9cd49 46ce709 754aa83 46ce709 754aa83 46ce709 129e5cb bf9cd49 129e5cb bf9cd49 129e5cb bf9cd49 129e5cb bf9cd49 129e5cb bf9cd49 129e5cb bf9cd49 5a5316a 46ce709 30d5e95 bf9cd49 30d5e95 bf9cd49 30d5e95 ba35116 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
---
license: apache-2.0
datasets:
- amazon_polarity
base_model: distilbert-base-uncased
model-index:
- name: distilbert-base-uncased-finetuned-emotion-balanced
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: amazon_polarity
type: sentiment
args: default
metrics:
- type: accuracy
value: 0.94112
name: Accuracy
- type: loss
value: 0.1634
name: Loss
- type: f1
value: 0.9417
name: F1
- task:
type: text-classification
name: Text Classification
dataset:
name: amazon_polarity
type: amazon_polarity
config: amazon_polarity
split: test
metrics:
- type: accuracy
value: 0.94112
name: Accuracy
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzlmMzdhYjNmN2U0NDBkM2U5ZDgwNzc3YjE1OGE4MWUxMDY1N2U0ODc0YzllODE5ODIyMzdkOWFhNzVjYmI5MyIsInZlcnNpb24iOjF9.3nlcLa4IpPQtklp7_U9XzC__Q_JVf_cWs6JVVII8trhX5zg_q9HEyQOQs4sRf6O-lIJg8zb3mgobZDJShuSJAQ
- type: precision
value: 0.9321570625232675
name: Precision
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjI2MDY4NGNlYjhjMGMxODBiNTc2ZjM5YzY1NjkxNTU4MDA2ZDIyY2QyZjUyZmE4YWY0N2Y1ODU5YTc2ZDM0NiIsInZlcnNpb24iOjF9.egEikTa2UyHV6SAGkHJKaa8FRwGHoZmJRCmqUQaJqeF5yxkz2V-WeCHoWDrCXsHCbXEs8UhLlyo7Lr83BPfkBg
- type: recall
value: 0.95149
name: Recall
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2E3M2Y3MDU4ZTM2YjdlZjQ0NTY3NGYwMmQ3NTk5ZmZkZWUwZWZiZDZjNjk2ZWE5MmY4MmZiM2FmN2U2M2QyNCIsInZlcnNpb24iOjF9.4VNbiWRmSee4cxuIZ5m7bN30i4BpK7xtHQ1BF8AuFIXkWQgzOmGdX35bLhLGWW8KL3ClA4RDPVBKYCIrw0YUBw
- type: auc
value: 0.9849019044624999
name: AUC
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTkwODk2ZTUwOTViNjBhYTU0ODk1MDA3MDY1NDkyZDc2YmRlNTQzNDE3YmE3YTVkYjNhN2JmMDAxZWQ0NjUxZSIsInZlcnNpb24iOjF9.YEr6OhqOL7QnqYqjUTQFMdkgU_uS1-vVnkJtn_-1UwSoX754UV_bL9S9KSH3DX4m5QFoRXdZxfeOocm1JbzaCA
- type: f1
value: 0.9417243188138998
name: F1
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzIyMmViNTQ3ZGU0M2I5ZmRjOGI1OWMwZGEwYmE5OGU5YTZlZTkzZjdkOTQ4YzJmOTc2MDliMDY4NDQ1NGRlNyIsInZlcnNpb24iOjF9.p05MGHTfHTAzp4u-qfiIn6Zmh5c3TW_uwjXWgbb982pL_oCILQb6jFXqhPpWXL321fPye7qaUVbGhcTJd8sdCA
- type: loss
value: 0.16342754662036896
name: loss
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzgxMDc4M2IxYjhkNjRhZmYyNzY1MTNkNzhmYjk2NmU1NjFiOTk1NDIzNzI1ZGU3MDYyYjQ2YmQ1NTI2N2NhMyIsInZlcnNpb24iOjF9.Zuf0nzn8XdvwRChKtE9CwJ0pgpc6Zey6oTR3jRiSkvNY2sNbo2bvAgFimGzgGYkDvRvYkTCXzCyxdb27l3QnAg
---
# distilbert-sentiment
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on a subset of the [amazon-polarity dataset](https://huggingface.co/datasets/amazon_polarity).
It achieves the following results on the evaluation set:
- Loss: 0.163
- Accuracy: 0.941
- F1_score: 0.942
## Model description
This sentiment classifier has been trained on 180_000 samples for the training set, 20_000 samples for the validation set and 20_000 samples for the test set.
## Intended uses & limitations
```python
from transformers import pipeline
# Create the pipeline
sentiment_classifier = pipeline('text-classification', model='AdamCodd/distilbert-base-uncased-finetuned-sentiment-amazon')
# Now you can use the pipeline to classify emotions
result = sentiment_classifier("This product doesn't fit me at all.")
print(result)
#[{'label': 'negative', 'score': 0.9994848966598511}]
```
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 1270
- optimizer: AdamW with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 150
- num_epochs: 2
- weight_decay: 0.01
### Training results
| key | value |
| --- | ----- |
| eval_accuracy | 0.94112 |
| eval_auc | 0.9849 |
| eval_f1_score | 0.9417 |
| eval_precision | 0.9321 |
| eval_recall | 0.95149 |
### Framework versions
- Transformers 4.34.0
- Pytorch lightning 2.0.9
- Tokenizers 0.14.0 |