--- license: apache-2.0 datasets: - amazon_polarity base_model: distilbert-base-uncased model-index: - name: distilbert-base-uncased-finetuned-emotion-balanced results: - task: type: text-classification name: Text Classification dataset: name: amazon_polarity type: sentiment args: default metrics: - type: accuracy value: 0.94112 name: Accuracy - type: loss value: 0.1634 name: Loss - type: f1 value: 0.9417 name: F1 - task: type: text-classification name: Text Classification dataset: name: amazon_polarity type: amazon_polarity config: amazon_polarity split: test metrics: - type: accuracy value: 0.94112 name: Accuracy verified: true verifyToken: >- eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzlmMzdhYjNmN2U0NDBkM2U5ZDgwNzc3YjE1OGE4MWUxMDY1N2U0ODc0YzllODE5ODIyMzdkOWFhNzVjYmI5MyIsInZlcnNpb24iOjF9.3nlcLa4IpPQtklp7_U9XzC__Q_JVf_cWs6JVVII8trhX5zg_q9HEyQOQs4sRf6O-lIJg8zb3mgobZDJShuSJAQ - type: precision value: 0.9321570625232675 name: Precision verified: true verifyToken: >- eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjI2MDY4NGNlYjhjMGMxODBiNTc2ZjM5YzY1NjkxNTU4MDA2ZDIyY2QyZjUyZmE4YWY0N2Y1ODU5YTc2ZDM0NiIsInZlcnNpb24iOjF9.egEikTa2UyHV6SAGkHJKaa8FRwGHoZmJRCmqUQaJqeF5yxkz2V-WeCHoWDrCXsHCbXEs8UhLlyo7Lr83BPfkBg - type: recall value: 0.95149 name: Recall verified: true verifyToken: >- eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2E3M2Y3MDU4ZTM2YjdlZjQ0NTY3NGYwMmQ3NTk5ZmZkZWUwZWZiZDZjNjk2ZWE5MmY4MmZiM2FmN2U2M2QyNCIsInZlcnNpb24iOjF9.4VNbiWRmSee4cxuIZ5m7bN30i4BpK7xtHQ1BF8AuFIXkWQgzOmGdX35bLhLGWW8KL3ClA4RDPVBKYCIrw0YUBw - type: auc value: 0.9849019044624999 name: AUC verified: true verifyToken: >- eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTkwODk2ZTUwOTViNjBhYTU0ODk1MDA3MDY1NDkyZDc2YmRlNTQzNDE3YmE3YTVkYjNhN2JmMDAxZWQ0NjUxZSIsInZlcnNpb24iOjF9.YEr6OhqOL7QnqYqjUTQFMdkgU_uS1-vVnkJtn_-1UwSoX754UV_bL9S9KSH3DX4m5QFoRXdZxfeOocm1JbzaCA - type: f1 value: 0.9417243188138998 name: F1 verified: true verifyToken: >- eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzIyMmViNTQ3ZGU0M2I5ZmRjOGI1OWMwZGEwYmE5OGU5YTZlZTkzZjdkOTQ4YzJmOTc2MDliMDY4NDQ1NGRlNyIsInZlcnNpb24iOjF9.p05MGHTfHTAzp4u-qfiIn6Zmh5c3TW_uwjXWgbb982pL_oCILQb6jFXqhPpWXL321fPye7qaUVbGhcTJd8sdCA - type: loss value: 0.16342754662036896 name: loss verified: true verifyToken: >- eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzgxMDc4M2IxYjhkNjRhZmYyNzY1MTNkNzhmYjk2NmU1NjFiOTk1NDIzNzI1ZGU3MDYyYjQ2YmQ1NTI2N2NhMyIsInZlcnNpb24iOjF9.Zuf0nzn8XdvwRChKtE9CwJ0pgpc6Zey6oTR3jRiSkvNY2sNbo2bvAgFimGzgGYkDvRvYkTCXzCyxdb27l3QnAg --- # distilbert-sentiment This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on a subset of the [amazon-polarity dataset](https://huggingface.co/datasets/amazon_polarity). It achieves the following results on the evaluation set: - Loss: 0.163 - Accuracy: 0.941 - F1_score: 0.942 ## Model description This sentiment classifier has been trained on 180_000 samples for the training set, 20_000 samples for the validation set and 20_000 samples for the test set. ## Intended uses & limitations ```python from transformers import pipeline # Create the pipeline sentiment_classifier = pipeline('text-classification', model='AdamCodd/distilbert-base-uncased-finetuned-sentiment-amazon') # Now you can use the pipeline to classify emotions result = sentiment_classifier("This product doesn't fit me at all.") print(result) #[{'label': 'negative', 'score': 0.9994848966598511}] ``` ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 1270 - optimizer: AdamW with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 150 - num_epochs: 2 - weight_decay: 0.01 ### Training results | key | value | | --- | ----- | | eval_accuracy | 0.94112 | | eval_auc | 0.9849 | | eval_f1_score | 0.9417 | | eval_precision | 0.9321 | | eval_recall | 0.95149 | ### Framework versions - Transformers 4.34.0 - Pytorch lightning 2.0.9 - Tokenizers 0.14.0