File size: 3,266 Bytes
842d857
 
 
 
 
 
 
 
 
b4b185d
842d857
b4b185d
842d857
00f6fb0
842d857
bf8e152
b4b185d
 
842d857
 
 
 
 
be5e6b3
842d857
 
 
 
 
 
 
 
 
 
 
 
 
b4b185d
be5e6b3
b4b185d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1207b9d
 
b4b185d
 
 
 
518548d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4b185d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
base_model:
- google/gemma-2-2b-it
- VAGOsolutions/SauerkrautLM-gemma-2-2b-it
- stvlynn/Gemma-2-2b-Chinese-it
library_name: transformers
tags:
- mergekit
- merge
license: apache-2.0
---
# Gemma2-2B-it Merged Fine-Tuned Models for Chinese & German understanding

Lightweight language model based on Gemma2 2B created by merging multiple fine tuned Gemma2-2B-IT versions to test multilingual conversation capabilities in specialized low parameter language models.

## 🤏 Models Merged
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it) as a base.

The following models were included in the merge:
* [VAGOsolutions/SauerkrautLM-gemma-2-2b-it](https://huggingface.co/VAGOsolutions/SauerkrautLM-gemma-2-2b-it)
* [stvlynn/Gemma-2-2b-Chinese-it](https://huggingface.co/stvlynn/Gemma-2-2b-Chinese-it)

## 🧩 Configuration

The following YAML configuration was used to produce this model:

```yaml
models:
  - model: google/gemma-2-2b-it
  - model: VAGOsolutions/SauerkrautLM-gemma-2-2b-it
  - model: stvlynn/Gemma-2-2b-Chinese-it
merge_method: model_stock
base_model: google/gemma-2-2b-it
dtype: bfloat16

```

### 💻 Usage

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("AdamLucek/gemma2-2b-it-chinese-german")
model = AutoModelForCausalLM.from_pretrained(
    "AdamLucek/gemma2-2b-it-chinese-german",
    device_map="cuda",
    torch_dtype=torch.bfloat16
)

# Prepare the input text
input_text = "请解释一下量子力学中的叠加原理,并举例说明该原理在实际应用中的重要性和挑战。"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

# Generate the output
outputs = model.generate(
    **input_ids,
    max_new_tokens=256,
    pad_token_id=tokenizer.eos_token_id
)

# Decode and print the generated text
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

**Ouptut**

```
## 量子叠加原理:

**叠加原理**是量子力学中一个重要的概念,它描述了量子系统在测量之前处于多个状态的可能性。

**简单来说,就是说,一个量子系统可以同时处于多个状态,直到我们测量它时,才会坍缩到一个确定的状态。**

**具体来说,我们可以用以下方式理解叠加原理:**

* **量子系统:** 比如一个原子,它可以处于多个能量状态。
* **叠加态:**  表示量子系统同时处于多个状态的概率分布。
* **测量:**  当我们测量量子系统时,它会坍缩到一个确定的状态。
* **坍缩:**  测量过程会改变量子系统的状态,使其坍缩到一个确定的状态。

**举例说明:**

想象一下一个量子系统,它可以处于两个状态:上或下。这个系统可以被描述为一个叠加态,表示它同时处于上和下两个状态的概率分布。

**如果我们没有测量这个系统,那么它就处于叠加态,同时处于上和下两个状态。**

**但是,当我们测量这个系统时
```