File size: 3,266 Bytes
842d857 b4b185d 842d857 b4b185d 842d857 00f6fb0 842d857 bf8e152 b4b185d 842d857 be5e6b3 842d857 b4b185d be5e6b3 b4b185d 1207b9d b4b185d 518548d b4b185d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
base_model:
- google/gemma-2-2b-it
- VAGOsolutions/SauerkrautLM-gemma-2-2b-it
- stvlynn/Gemma-2-2b-Chinese-it
library_name: transformers
tags:
- mergekit
- merge
license: apache-2.0
---
# Gemma2-2B-it Merged Fine-Tuned Models for Chinese & German understanding
Lightweight language model based on Gemma2 2B created by merging multiple fine tuned Gemma2-2B-IT versions to test multilingual conversation capabilities in specialized low parameter language models.
## 🤏 Models Merged
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it) as a base.
The following models were included in the merge:
* [VAGOsolutions/SauerkrautLM-gemma-2-2b-it](https://huggingface.co/VAGOsolutions/SauerkrautLM-gemma-2-2b-it)
* [stvlynn/Gemma-2-2b-Chinese-it](https://huggingface.co/stvlynn/Gemma-2-2b-Chinese-it)
## 🧩 Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: google/gemma-2-2b-it
- model: VAGOsolutions/SauerkrautLM-gemma-2-2b-it
- model: stvlynn/Gemma-2-2b-Chinese-it
merge_method: model_stock
base_model: google/gemma-2-2b-it
dtype: bfloat16
```
### 💻 Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("AdamLucek/gemma2-2b-it-chinese-german")
model = AutoModelForCausalLM.from_pretrained(
"AdamLucek/gemma2-2b-it-chinese-german",
device_map="cuda",
torch_dtype=torch.bfloat16
)
# Prepare the input text
input_text = "请解释一下量子力学中的叠加原理,并举例说明该原理在实际应用中的重要性和挑战。"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
# Generate the output
outputs = model.generate(
**input_ids,
max_new_tokens=256,
pad_token_id=tokenizer.eos_token_id
)
# Decode and print the generated text
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
**Ouptut**
```
## 量子叠加原理:
**叠加原理**是量子力学中一个重要的概念,它描述了量子系统在测量之前处于多个状态的可能性。
**简单来说,就是说,一个量子系统可以同时处于多个状态,直到我们测量它时,才会坍缩到一个确定的状态。**
**具体来说,我们可以用以下方式理解叠加原理:**
* **量子系统:** 比如一个原子,它可以处于多个能量状态。
* **叠加态:** 表示量子系统同时处于多个状态的概率分布。
* **测量:** 当我们测量量子系统时,它会坍缩到一个确定的状态。
* **坍缩:** 测量过程会改变量子系统的状态,使其坍缩到一个确定的状态。
**举例说明:**
想象一下一个量子系统,它可以处于两个状态:上或下。这个系统可以被描述为一个叠加态,表示它同时处于上和下两个状态的概率分布。
**如果我们没有测量这个系统,那么它就处于叠加态,同时处于上和下两个状态。**
**但是,当我们测量这个系统时
``` |