File size: 1,660 Bytes
e90d99a
f086650
 
 
 
 
 
 
 
e90d99a
 
f086650
 
e90d99a
f086650
e90d99a
f086650
 
 
e90d99a
f086650
e90d99a
f086650
e90d99a
f086650
e90d99a
f086650
e90d99a
f086650
e90d99a
f086650
e90d99a
f086650
e90d99a
f086650
e90d99a
f086650
 
 
 
 
 
 
 
 
e90d99a
f086650
e90d99a
f086650
 
 
 
 
 
 
e90d99a
 
f086650
e90d99a
f086650
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: mit
library_name: peft
tags:
- generated_from_trainer
base_model: microsoft/Phi-3-mini-128k-instruct
model-index:
- name: CodePhi-3-mini-128k-instruct-pythonAPPSLORA1k
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CodePhi-3-mini-128k-instruct-pythonAPPSLORA1k

This model is a fine-tuned version of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6887

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 200
- training_steps: 1000

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.756         | 0.2   | 200  | 0.7382          |
| 0.6849        | 0.4   | 400  | 0.7021          |
| 0.6805        | 0.6   | 600  | 0.6913          |
| 0.6081        | 0.8   | 800  | 0.6887          |
| 0.3849        | 1.0   | 1000 | 0.6887          |


### Framework versions

- PEFT 0.11.0
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1