Adriana213's picture
Update Model Card
cf5102d verified
|
raw
history blame
2.12 kB
metadata
license: mit
base_model: xlm-roberta-base
tags:
  - generated_from_trainer
model-index:
  - name: xlm-roberta-base-finetuned-panx-en
    results: []

xlm-roberta-base-finetuned-panx-en

This model is a fine-tuned version of xlm-roberta-base. It achieves the following results on the evaluation set:

  • Loss: 0.3905
  • F1 Score: 0.6861

Model description

This model is a fine-tuned version of xlm-roberta-base on the English subset of the PAN-X dataset for Named Entity Recognition (NER). The model has been fine-tuned to perform token classification tasks and is evaluated on its performance in identifying named entities in English text.

Intended uses & limitations

Intended uses:

Named Entity Recognition (NER) tasks specifically for English. Token classification tasks involving English text.

Limitations:

The model's performance is optimized for English and may not generalize well to other languages without further fine-tuning. The model's predictions are based on the data it was trained on and may not handle out-of-domain data as effectively.d

Training and evaluation data

The model was fine-tuned on the English subset of the PAN-X dataset, which includes labeled examples of named entities in English text. The evaluation data is a separate portion of the same dataset, used to assess the model's performance

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 Score
1.0479 1.0 50 0.4854 0.5857
0.4604 2.0 100 0.3995 0.6605
0.3797 3.0 150 0.3905 0.6861

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1