AdrienB134
commited on
Commit
•
36d9180
1
Parent(s):
4bbe0dc
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,863 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: croissantllm/CroissantCool-v0.2
|
4 |
+
datasets: asi/wikitext_fr
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
- mteb
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: final
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
type: Clustering
|
15 |
+
dataset:
|
16 |
+
type: lyon-nlp/alloprof
|
17 |
+
name: MTEB AlloProfClusteringP2P (fra-Latn)
|
18 |
+
config: fra-Latn
|
19 |
+
split: test
|
20 |
+
revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
|
21 |
+
metrics:
|
22 |
+
- type: v_measure
|
23 |
+
value: 62.345943052433995
|
24 |
+
- task:
|
25 |
+
type: Clustering
|
26 |
+
dataset:
|
27 |
+
type: lyon-nlp/alloprof
|
28 |
+
name: MTEB AlloProfClusteringS2S (fra-Latn)
|
29 |
+
config: fra-Latn
|
30 |
+
split: test
|
31 |
+
revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
|
32 |
+
metrics:
|
33 |
+
- type: v_measure
|
34 |
+
value: 25.729454984521148
|
35 |
+
- task:
|
36 |
+
type: Reranking
|
37 |
+
dataset:
|
38 |
+
type: lyon-nlp/mteb-fr-reranking-alloprof-s2p
|
39 |
+
name: MTEB AlloprofReranking (fra-Latn)
|
40 |
+
config: fra-Latn
|
41 |
+
split: test
|
42 |
+
revision: 65393d0d7a08a10b4e348135e824f385d420b0fd
|
43 |
+
metrics:
|
44 |
+
- type: map
|
45 |
+
value: 26.596323297349183
|
46 |
+
- type: mrr
|
47 |
+
value: 26.091629657044162
|
48 |
+
- task:
|
49 |
+
type: Retrieval
|
50 |
+
dataset:
|
51 |
+
type: lyon-nlp/alloprof
|
52 |
+
name: MTEB AlloprofRetrieval (fra-Latn)
|
53 |
+
config: fra-Latn
|
54 |
+
split: test
|
55 |
+
revision: fcf295ea64c750f41fadbaa37b9b861558e1bfbd
|
56 |
+
metrics:
|
57 |
+
- type: map_at_1
|
58 |
+
value: 0.345
|
59 |
+
- type: map_at_10
|
60 |
+
value: 0.9339999999999999
|
61 |
+
- type: map_at_100
|
62 |
+
value: 1.191
|
63 |
+
- type: map_at_1000
|
64 |
+
value: 1.3419999999999999
|
65 |
+
- type: map_at_20
|
66 |
+
value: 1.02
|
67 |
+
- type: map_at_3
|
68 |
+
value: 0.6689999999999999
|
69 |
+
- type: map_at_5
|
70 |
+
value: 0.753
|
71 |
+
- type: mrr_at_1
|
72 |
+
value: 0.345
|
73 |
+
- type: mrr_at_10
|
74 |
+
value: 0.9339999999999999
|
75 |
+
- type: mrr_at_100
|
76 |
+
value: 1.191
|
77 |
+
- type: mrr_at_1000
|
78 |
+
value: 1.3419999999999999
|
79 |
+
- type: mrr_at_20
|
80 |
+
value: 1.02
|
81 |
+
- type: mrr_at_3
|
82 |
+
value: 0.6689999999999999
|
83 |
+
- type: mrr_at_5
|
84 |
+
value: 0.753
|
85 |
+
- type: ndcg_at_1
|
86 |
+
value: 0.345
|
87 |
+
- type: ndcg_at_10
|
88 |
+
value: 1.384
|
89 |
+
- type: ndcg_at_100
|
90 |
+
value: 3.1510000000000002
|
91 |
+
- type: ndcg_at_1000
|
92 |
+
value: 9.014
|
93 |
+
- type: ndcg_at_20
|
94 |
+
value: 1.6920000000000002
|
95 |
+
- type: ndcg_at_3
|
96 |
+
value: 0.7849999999999999
|
97 |
+
- type: ndcg_at_5
|
98 |
+
value: 0.941
|
99 |
+
- type: precision_at_1
|
100 |
+
value: 0.345
|
101 |
+
- type: precision_at_10
|
102 |
+
value: 0.28900000000000003
|
103 |
+
- type: precision_at_100
|
104 |
+
value: 0.124
|
105 |
+
- type: precision_at_1000
|
106 |
+
value: 0.063
|
107 |
+
- type: precision_at_20
|
108 |
+
value: 0.20500000000000002
|
109 |
+
- type: precision_at_3
|
110 |
+
value: 0.374
|
111 |
+
- type: precision_at_5
|
112 |
+
value: 0.302
|
113 |
+
- type: recall_at_1
|
114 |
+
value: 0.345
|
115 |
+
- type: recall_at_10
|
116 |
+
value: 2.8930000000000002
|
117 |
+
- type: recall_at_100
|
118 |
+
value: 12.435
|
119 |
+
- type: recall_at_1000
|
120 |
+
value: 62.867
|
121 |
+
- type: recall_at_20
|
122 |
+
value: 4.102
|
123 |
+
- type: recall_at_3
|
124 |
+
value: 1.123
|
125 |
+
- type: recall_at_5
|
126 |
+
value: 1.5110000000000001
|
127 |
+
- task:
|
128 |
+
type: Classification
|
129 |
+
dataset:
|
130 |
+
type: mteb/amazon_reviews_multi
|
131 |
+
name: MTEB AmazonReviewsClassification (fra-Latn)
|
132 |
+
config: fra-Latn
|
133 |
+
split: test
|
134 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
135 |
+
metrics:
|
136 |
+
- type: accuracy
|
137 |
+
value: 32.662
|
138 |
+
- type: f1
|
139 |
+
value: 32.443152253731846
|
140 |
+
- task:
|
141 |
+
type: Retrieval
|
142 |
+
dataset:
|
143 |
+
type: maastrichtlawtech/bsard
|
144 |
+
name: MTEB BSARDRetrieval (fra-Latn)
|
145 |
+
config: fra-Latn
|
146 |
+
split: test
|
147 |
+
revision: 5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59
|
148 |
+
metrics:
|
149 |
+
- type: map_at_1
|
150 |
+
value: 0.0
|
151 |
+
- type: map_at_10
|
152 |
+
value: 0.0
|
153 |
+
- type: map_at_100
|
154 |
+
value: 0.062
|
155 |
+
- type: map_at_1000
|
156 |
+
value: 0.077
|
157 |
+
- type: map_at_20
|
158 |
+
value: 0.0
|
159 |
+
- type: map_at_3
|
160 |
+
value: 0.0
|
161 |
+
- type: map_at_5
|
162 |
+
value: 0.0
|
163 |
+
- type: mrr_at_1
|
164 |
+
value: 0.0
|
165 |
+
- type: mrr_at_10
|
166 |
+
value: 0.0
|
167 |
+
- type: mrr_at_100
|
168 |
+
value: 0.062
|
169 |
+
- type: mrr_at_1000
|
170 |
+
value: 0.077
|
171 |
+
- type: mrr_at_20
|
172 |
+
value: 0.0
|
173 |
+
- type: mrr_at_3
|
174 |
+
value: 0.0
|
175 |
+
- type: mrr_at_5
|
176 |
+
value: 0.0
|
177 |
+
- type: ndcg_at_1
|
178 |
+
value: 0.0
|
179 |
+
- type: ndcg_at_10
|
180 |
+
value: 0.0
|
181 |
+
- type: ndcg_at_100
|
182 |
+
value: 0.484
|
183 |
+
- type: ndcg_at_1000
|
184 |
+
value: 1.054
|
185 |
+
- type: ndcg_at_20
|
186 |
+
value: 0.0
|
187 |
+
- type: ndcg_at_3
|
188 |
+
value: 0.0
|
189 |
+
- type: ndcg_at_5
|
190 |
+
value: 0.0
|
191 |
+
- type: precision_at_1
|
192 |
+
value: 0.0
|
193 |
+
- type: precision_at_10
|
194 |
+
value: 0.0
|
195 |
+
- type: precision_at_100
|
196 |
+
value: 0.027
|
197 |
+
- type: precision_at_1000
|
198 |
+
value: 0.008
|
199 |
+
- type: precision_at_20
|
200 |
+
value: 0.0
|
201 |
+
- type: precision_at_3
|
202 |
+
value: 0.0
|
203 |
+
- type: precision_at_5
|
204 |
+
value: 0.0
|
205 |
+
- type: recall_at_1
|
206 |
+
value: 0.0
|
207 |
+
- type: recall_at_10
|
208 |
+
value: 0.0
|
209 |
+
- type: recall_at_100
|
210 |
+
value: 2.703
|
211 |
+
- type: recall_at_1000
|
212 |
+
value: 7.6579999999999995
|
213 |
+
- type: recall_at_20
|
214 |
+
value: 0.0
|
215 |
+
- type: recall_at_3
|
216 |
+
value: 0.0
|
217 |
+
- type: recall_at_5
|
218 |
+
value: 0.0
|
219 |
+
- task:
|
220 |
+
type: Clustering
|
221 |
+
dataset:
|
222 |
+
type: lyon-nlp/clustering-hal-s2s
|
223 |
+
name: MTEB HALClusteringS2S (fra-Latn)
|
224 |
+
config: fra-Latn
|
225 |
+
split: test
|
226 |
+
revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915
|
227 |
+
metrics:
|
228 |
+
- type: v_measure
|
229 |
+
value: 13.77084465510841
|
230 |
+
- task:
|
231 |
+
type: Clustering
|
232 |
+
dataset:
|
233 |
+
type: mlsum
|
234 |
+
name: MTEB MLSUMClusteringP2P (fra-Latn)
|
235 |
+
config: fra-Latn
|
236 |
+
split: test
|
237 |
+
revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
|
238 |
+
metrics:
|
239 |
+
- type: v_measure
|
240 |
+
value: 45.43375637260015
|
241 |
+
- task:
|
242 |
+
type: Clustering
|
243 |
+
dataset:
|
244 |
+
type: mlsum
|
245 |
+
name: MTEB MLSUMClusteringS2S (fra-Latn)
|
246 |
+
config: fra-Latn
|
247 |
+
split: test
|
248 |
+
revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
|
249 |
+
metrics:
|
250 |
+
- type: v_measure
|
251 |
+
value: 45.20564648796975
|
252 |
+
- task:
|
253 |
+
type: Classification
|
254 |
+
dataset:
|
255 |
+
type: mteb/mtop_domain
|
256 |
+
name: MTEB MTOPDomainClassification (fra-Latn)
|
257 |
+
config: fra-Latn
|
258 |
+
split: test
|
259 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
260 |
+
metrics:
|
261 |
+
- type: accuracy
|
262 |
+
value: 73.42937676166615
|
263 |
+
- type: f1
|
264 |
+
value: 72.65861284500563
|
265 |
+
- task:
|
266 |
+
type: Classification
|
267 |
+
dataset:
|
268 |
+
type: mteb/mtop_intent
|
269 |
+
name: MTEB MTOPIntentClassification (fra-Latn)
|
270 |
+
config: fra-Latn
|
271 |
+
split: test
|
272 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
273 |
+
metrics:
|
274 |
+
- type: accuracy
|
275 |
+
value: 58.54368932038836
|
276 |
+
- type: f1
|
277 |
+
value: 37.51985447597095
|
278 |
+
- task:
|
279 |
+
type: Classification
|
280 |
+
dataset:
|
281 |
+
type: mteb/masakhanews
|
282 |
+
name: MTEB MasakhaNEWSClassification (fra-Latn)
|
283 |
+
config: fra-Latn
|
284 |
+
split: test
|
285 |
+
revision: 18193f187b92da67168c655c9973a165ed9593dd
|
286 |
+
metrics:
|
287 |
+
- type: accuracy
|
288 |
+
value: 75.56872037914692
|
289 |
+
- type: f1
|
290 |
+
value: 71.99185345982795
|
291 |
+
- task:
|
292 |
+
type: Clustering
|
293 |
+
dataset:
|
294 |
+
type: masakhane/masakhanews
|
295 |
+
name: MTEB MasakhaNEWSClusteringP2P (fra-Latn)
|
296 |
+
config: fra-Latn
|
297 |
+
split: test
|
298 |
+
revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
|
299 |
+
metrics:
|
300 |
+
- type: v_measure
|
301 |
+
value: 38.20382948117535
|
302 |
+
- task:
|
303 |
+
type: Clustering
|
304 |
+
dataset:
|
305 |
+
type: masakhane/masakhanews
|
306 |
+
name: MTEB MasakhaNEWSClusteringS2S (fra-Latn)
|
307 |
+
config: fra-Latn
|
308 |
+
split: test
|
309 |
+
revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
|
310 |
+
metrics:
|
311 |
+
- type: v_measure
|
312 |
+
value: 26.943825642352117
|
313 |
+
- task:
|
314 |
+
type: Classification
|
315 |
+
dataset:
|
316 |
+
type: mteb/amazon_massive_intent
|
317 |
+
name: MTEB MassiveIntentClassification (fra-Latn)
|
318 |
+
config: fra-Latn
|
319 |
+
split: test
|
320 |
+
revision: 4672e20407010da34463acc759c162ca9734bca6
|
321 |
+
metrics:
|
322 |
+
- type: accuracy
|
323 |
+
value: 50.20847343644924
|
324 |
+
- type: f1
|
325 |
+
value: 47.32281768380685
|
326 |
+
- task:
|
327 |
+
type: Classification
|
328 |
+
dataset:
|
329 |
+
type: mteb/amazon_massive_scenario
|
330 |
+
name: MTEB MassiveScenarioClassification (fra-Latn)
|
331 |
+
config: fra-Latn
|
332 |
+
split: test
|
333 |
+
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
|
334 |
+
metrics:
|
335 |
+
- type: accuracy
|
336 |
+
value: 52.57565568258238
|
337 |
+
- type: f1
|
338 |
+
value: 50.95953249242336
|
339 |
+
- task:
|
340 |
+
type: Retrieval
|
341 |
+
dataset:
|
342 |
+
type: jinaai/mintakaqa
|
343 |
+
name: MTEB MintakaRetrieval (fra-Latn)
|
344 |
+
config: fra-Latn
|
345 |
+
split: test
|
346 |
+
revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e
|
347 |
+
metrics:
|
348 |
+
- type: map_at_1
|
349 |
+
value: 0.164
|
350 |
+
- type: map_at_10
|
351 |
+
value: 0.584
|
352 |
+
- type: map_at_100
|
353 |
+
value: 0.8240000000000001
|
354 |
+
- type: map_at_1000
|
355 |
+
value: 0.9769999999999999
|
356 |
+
- type: map_at_20
|
357 |
+
value: 0.6669999999999999
|
358 |
+
- type: map_at_3
|
359 |
+
value: 0.40299999999999997
|
360 |
+
- type: map_at_5
|
361 |
+
value: 0.47600000000000003
|
362 |
+
- type: mrr_at_1
|
363 |
+
value: 0.164
|
364 |
+
- type: mrr_at_10
|
365 |
+
value: 0.584
|
366 |
+
- type: mrr_at_100
|
367 |
+
value: 0.8240000000000001
|
368 |
+
- type: mrr_at_1000
|
369 |
+
value: 0.9769999999999999
|
370 |
+
- type: mrr_at_20
|
371 |
+
value: 0.6669999999999999
|
372 |
+
- type: mrr_at_3
|
373 |
+
value: 0.40299999999999997
|
374 |
+
- type: mrr_at_5
|
375 |
+
value: 0.47600000000000003
|
376 |
+
- type: ndcg_at_1
|
377 |
+
value: 0.164
|
378 |
+
- type: ndcg_at_10
|
379 |
+
value: 0.8670000000000001
|
380 |
+
- type: ndcg_at_100
|
381 |
+
value: 2.443
|
382 |
+
- type: ndcg_at_1000
|
383 |
+
value: 8.671
|
384 |
+
- type: ndcg_at_20
|
385 |
+
value: 1.176
|
386 |
+
- type: ndcg_at_3
|
387 |
+
value: 0.47800000000000004
|
388 |
+
- type: ndcg_at_5
|
389 |
+
value: 0.612
|
390 |
+
- type: precision_at_1
|
391 |
+
value: 0.164
|
392 |
+
- type: precision_at_10
|
393 |
+
value: 0.18
|
394 |
+
- type: precision_at_100
|
395 |
+
value: 0.10200000000000001
|
396 |
+
- type: precision_at_1000
|
397 |
+
value: 0.064
|
398 |
+
- type: precision_at_20
|
399 |
+
value: 0.152
|
400 |
+
- type: precision_at_3
|
401 |
+
value: 0.232
|
402 |
+
- type: precision_at_5
|
403 |
+
value: 0.20500000000000002
|
404 |
+
- type: recall_at_1
|
405 |
+
value: 0.164
|
406 |
+
- type: recall_at_10
|
407 |
+
value: 1.802
|
408 |
+
- type: recall_at_100
|
409 |
+
value: 10.156
|
410 |
+
- type: recall_at_1000
|
411 |
+
value: 64.21
|
412 |
+
- type: recall_at_20
|
413 |
+
value: 3.0300000000000002
|
414 |
+
- type: recall_at_3
|
415 |
+
value: 0.696
|
416 |
+
- type: recall_at_5
|
417 |
+
value: 1.024
|
418 |
+
- task:
|
419 |
+
type: PairClassification
|
420 |
+
dataset:
|
421 |
+
type: GEM/opusparcus
|
422 |
+
name: MTEB OpusparcusPC (fra-Latn)
|
423 |
+
config: fra-Latn
|
424 |
+
split: test
|
425 |
+
revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a
|
426 |
+
metrics:
|
427 |
+
- type: cos_sim_accuracy
|
428 |
+
value: 73.433242506812
|
429 |
+
- type: cos_sim_ap
|
430 |
+
value: 86.03577758642086
|
431 |
+
- type: cos_sim_f1
|
432 |
+
value: 82.1602478972997
|
433 |
+
- type: cos_sim_precision
|
434 |
+
value: 74.12140575079871
|
435 |
+
- type: cos_sim_recall
|
436 |
+
value: 92.15491559086395
|
437 |
+
- type: dot_accuracy
|
438 |
+
value: 68.8692098092643
|
439 |
+
- type: dot_ap
|
440 |
+
value: 75.51070462676913
|
441 |
+
- type: dot_f1
|
442 |
+
value: 81.47547628698824
|
443 |
+
- type: dot_precision
|
444 |
+
value: 68.83561643835617
|
445 |
+
- type: dot_recall
|
446 |
+
value: 99.80139026812313
|
447 |
+
- type: euclidean_accuracy
|
448 |
+
value: 73.84196185286103
|
449 |
+
- type: euclidean_ap
|
450 |
+
value: 86.27910998502644
|
451 |
+
- type: euclidean_f1
|
452 |
+
value: 82.5531914893617
|
453 |
+
- type: euclidean_precision
|
454 |
+
value: 72.22635889798957
|
455 |
+
- type: euclidean_recall
|
456 |
+
value: 96.32571996027805
|
457 |
+
- type: manhattan_accuracy
|
458 |
+
value: 73.9100817438692
|
459 |
+
- type: manhattan_ap
|
460 |
+
value: 86.43527306280204
|
461 |
+
- type: manhattan_f1
|
462 |
+
value: 82.57349808265872
|
463 |
+
- type: manhattan_precision
|
464 |
+
value: 72.31343283582089
|
465 |
+
- type: manhattan_recall
|
466 |
+
value: 96.22641509433963
|
467 |
+
- type: max_accuracy
|
468 |
+
value: 73.9100817438692
|
469 |
+
- type: max_ap
|
470 |
+
value: 86.43527306280204
|
471 |
+
- type: max_f1
|
472 |
+
value: 82.57349808265872
|
473 |
+
- task:
|
474 |
+
type: PairClassification
|
475 |
+
dataset:
|
476 |
+
type: paws-x
|
477 |
+
name: MTEB PawsX (fra-Latn)
|
478 |
+
config: fra-Latn
|
479 |
+
split: test
|
480 |
+
revision: 8a04d940a42cd40658986fdd8e3da561533a3646
|
481 |
+
metrics:
|
482 |
+
- type: cos_sim_accuracy
|
483 |
+
value: 61.550000000000004
|
484 |
+
- type: cos_sim_ap
|
485 |
+
value: 60.30864957174996
|
486 |
+
- type: cos_sim_f1
|
487 |
+
value: 62.891311994372145
|
488 |
+
- type: cos_sim_precision
|
489 |
+
value: 46.08247422680412
|
490 |
+
- type: cos_sim_recall
|
491 |
+
value: 99.00332225913621
|
492 |
+
- type: dot_accuracy
|
493 |
+
value: 55.35
|
494 |
+
- type: dot_ap
|
495 |
+
value: 47.540176633815165
|
496 |
+
- type: dot_f1
|
497 |
+
value: 62.20227821884707
|
498 |
+
- type: dot_precision
|
499 |
+
value: 45.18555667001003
|
500 |
+
- type: dot_recall
|
501 |
+
value: 99.77851605758582
|
502 |
+
- type: euclidean_accuracy
|
503 |
+
value: 61.95
|
504 |
+
- type: euclidean_ap
|
505 |
+
value: 60.44070441806914
|
506 |
+
- type: euclidean_f1
|
507 |
+
value: 62.89978678038379
|
508 |
+
- type: euclidean_precision
|
509 |
+
value: 46.31083202511774
|
510 |
+
- type: euclidean_recall
|
511 |
+
value: 98.00664451827242
|
512 |
+
- type: manhattan_accuracy
|
513 |
+
value: 61.9
|
514 |
+
- type: manhattan_ap
|
515 |
+
value: 60.52939878134297
|
516 |
+
- type: manhattan_f1
|
517 |
+
value: 63.034188034188034
|
518 |
+
- type: manhattan_precision
|
519 |
+
value: 46.45669291338583
|
520 |
+
- type: manhattan_recall
|
521 |
+
value: 98.00664451827242
|
522 |
+
- type: max_accuracy
|
523 |
+
value: 61.95
|
524 |
+
- type: max_ap
|
525 |
+
value: 60.52939878134297
|
526 |
+
- type: max_f1
|
527 |
+
value: 63.034188034188034
|
528 |
+
- task:
|
529 |
+
type: STS
|
530 |
+
dataset:
|
531 |
+
type: Lajavaness/SICK-fr
|
532 |
+
name: MTEB SICKFr (fra-Latn)
|
533 |
+
config: fra-Latn
|
534 |
+
split: test
|
535 |
+
revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a
|
536 |
+
metrics:
|
537 |
+
- type: cos_sim_pearson
|
538 |
+
value: 55.697943925847646
|
539 |
+
- type: cos_sim_spearman
|
540 |
+
value: 53.33151992866752
|
541 |
+
- type: euclidean_pearson
|
542 |
+
value: 54.32882764397367
|
543 |
+
- type: euclidean_spearman
|
544 |
+
value: 53.54968438609837
|
545 |
+
- type: manhattan_pearson
|
546 |
+
value: 54.56634524641888
|
547 |
+
- type: manhattan_spearman
|
548 |
+
value: 53.81344727168701
|
549 |
+
- task:
|
550 |
+
type: STS
|
551 |
+
dataset:
|
552 |
+
type: mteb/sts22-crosslingual-sts
|
553 |
+
name: MTEB STS22 (fra-Latn)
|
554 |
+
config: fra-Latn
|
555 |
+
split: test
|
556 |
+
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
|
557 |
+
metrics:
|
558 |
+
- type: cos_sim_pearson
|
559 |
+
value: 22.771197036286605
|
560 |
+
- type: cos_sim_spearman
|
561 |
+
value: 60.29016180301653
|
562 |
+
- type: euclidean_pearson
|
563 |
+
value: 35.31319988418939
|
564 |
+
- type: euclidean_spearman
|
565 |
+
value: 59.61398871828641
|
566 |
+
- type: manhattan_pearson
|
567 |
+
value: 36.10315029818106
|
568 |
+
- type: manhattan_spearman
|
569 |
+
value: 60.5122301133988
|
570 |
+
- task:
|
571 |
+
type: STS
|
572 |
+
dataset:
|
573 |
+
type: mteb/stsb_multi_mt
|
574 |
+
name: MTEB STSBenchmarkMultilingualSTS (fra-Latn)
|
575 |
+
config: fra-Latn
|
576 |
+
split: test
|
577 |
+
revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c
|
578 |
+
metrics:
|
579 |
+
- type: cos_sim_pearson
|
580 |
+
value: 47.730796921644384
|
581 |
+
- type: cos_sim_spearman
|
582 |
+
value: 49.54059034135741
|
583 |
+
- type: euclidean_pearson
|
584 |
+
value: 49.48474815018905
|
585 |
+
- type: euclidean_spearman
|
586 |
+
value: 50.71533884079761
|
587 |
+
- type: manhattan_pearson
|
588 |
+
value: 50.10488858533032
|
589 |
+
- type: manhattan_spearman
|
590 |
+
value: 51.1375710610132
|
591 |
+
- task:
|
592 |
+
type: Summarization
|
593 |
+
dataset:
|
594 |
+
type: lyon-nlp/summarization-summeval-fr-p2p
|
595 |
+
name: MTEB SummEvalFr (fra-Latn)
|
596 |
+
config: fra-Latn
|
597 |
+
split: test
|
598 |
+
revision: b385812de6a9577b6f4d0f88c6a6e35395a94054
|
599 |
+
metrics:
|
600 |
+
- type: cos_sim_pearson
|
601 |
+
value: 29.102661066592816
|
602 |
+
- type: cos_sim_spearman
|
603 |
+
value: 29.615000554218955
|
604 |
+
- type: dot_pearson
|
605 |
+
value: 19.77690299595119
|
606 |
+
- type: dot_spearman
|
607 |
+
value: 19.112834848310158
|
608 |
+
- task:
|
609 |
+
type: Reranking
|
610 |
+
dataset:
|
611 |
+
type: lyon-nlp/mteb-fr-reranking-syntec-s2p
|
612 |
+
name: MTEB SyntecReranking (fra-Latn)
|
613 |
+
config: fra-Latn
|
614 |
+
split: test
|
615 |
+
revision: daf0863838cd9e3ba50544cdce3ac2b338a1b0ad
|
616 |
+
metrics:
|
617 |
+
- type: map
|
618 |
+
value: 37.372655122655125
|
619 |
+
- type: mrr
|
620 |
+
value: 37.28174603174604
|
621 |
+
- task:
|
622 |
+
type: Retrieval
|
623 |
+
dataset:
|
624 |
+
type: lyon-nlp/mteb-fr-retrieval-syntec-s2p
|
625 |
+
name: MTEB SyntecRetrieval (fra-Latn)
|
626 |
+
config: fra-Latn
|
627 |
+
split: test
|
628 |
+
revision: 19661ccdca4dfc2d15122d776b61685f48c68ca9
|
629 |
+
metrics:
|
630 |
+
- type: map_at_1
|
631 |
+
value: 2.0
|
632 |
+
- type: map_at_10
|
633 |
+
value: 6.816999999999999
|
634 |
+
- type: map_at_100
|
635 |
+
value: 9.522
|
636 |
+
- type: map_at_1000
|
637 |
+
value: 9.522
|
638 |
+
- type: map_at_20
|
639 |
+
value: 8.402
|
640 |
+
- type: map_at_3
|
641 |
+
value: 4.167
|
642 |
+
- type: map_at_5
|
643 |
+
value: 4.867
|
644 |
+
- type: mrr_at_1
|
645 |
+
value: 2.0
|
646 |
+
- type: mrr_at_10
|
647 |
+
value: 6.816999999999999
|
648 |
+
- type: mrr_at_100
|
649 |
+
value: 9.522
|
650 |
+
- type: mrr_at_1000
|
651 |
+
value: 9.522
|
652 |
+
- type: mrr_at_20
|
653 |
+
value: 8.402
|
654 |
+
- type: mrr_at_3
|
655 |
+
value: 4.167
|
656 |
+
- type: mrr_at_5
|
657 |
+
value: 4.867
|
658 |
+
- type: ndcg_at_1
|
659 |
+
value: 2.0
|
660 |
+
- type: ndcg_at_10
|
661 |
+
value: 10.940999999999999
|
662 |
+
- type: ndcg_at_100
|
663 |
+
value: 25.96
|
664 |
+
- type: ndcg_at_1000
|
665 |
+
value: 25.96
|
666 |
+
- type: ndcg_at_20
|
667 |
+
value: 16.742
|
668 |
+
- type: ndcg_at_3
|
669 |
+
value: 4.893
|
670 |
+
- type: ndcg_at_5
|
671 |
+
value: 6.141
|
672 |
+
- type: precision_at_1
|
673 |
+
value: 2.0
|
674 |
+
- type: precision_at_10
|
675 |
+
value: 2.5
|
676 |
+
- type: precision_at_100
|
677 |
+
value: 1.0
|
678 |
+
- type: precision_at_1000
|
679 |
+
value: 0.1
|
680 |
+
- type: precision_at_20
|
681 |
+
value: 2.4
|
682 |
+
- type: precision_at_3
|
683 |
+
value: 2.333
|
684 |
+
- type: precision_at_5
|
685 |
+
value: 2.0
|
686 |
+
- type: recall_at_1
|
687 |
+
value: 2.0
|
688 |
+
- type: recall_at_10
|
689 |
+
value: 25.0
|
690 |
+
- type: recall_at_100
|
691 |
+
value: 100.0
|
692 |
+
- type: recall_at_1000
|
693 |
+
value: 100.0
|
694 |
+
- type: recall_at_20
|
695 |
+
value: 48.0
|
696 |
+
- type: recall_at_3
|
697 |
+
value: 7.000000000000001
|
698 |
+
- type: recall_at_5
|
699 |
+
value: 10.0
|
700 |
+
- task:
|
701 |
+
type: Retrieval
|
702 |
+
dataset:
|
703 |
+
type: jinaai/xpqa
|
704 |
+
name: MTEB XPQARetrieval (fra-Latn)
|
705 |
+
config: fra-Latn
|
706 |
+
split: test
|
707 |
+
revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f
|
708 |
+
metrics:
|
709 |
+
- type: map_at_1
|
710 |
+
value: 9.437
|
711 |
+
- type: map_at_10
|
712 |
+
value: 13.574
|
713 |
+
- type: map_at_100
|
714 |
+
value: 14.265
|
715 |
+
- type: map_at_1000
|
716 |
+
value: 14.527999999999999
|
717 |
+
- type: map_at_20
|
718 |
+
value: 13.834
|
719 |
+
- type: map_at_3
|
720 |
+
value: 12.277000000000001
|
721 |
+
- type: map_at_5
|
722 |
+
value: 12.936
|
723 |
+
- type: mrr_at_1
|
724 |
+
value: 14.285999999999998
|
725 |
+
- type: mrr_at_10
|
726 |
+
value: 18.269
|
727 |
+
- type: mrr_at_100
|
728 |
+
value: 18.991
|
729 |
+
- type: mrr_at_1000
|
730 |
+
value: 19.15
|
731 |
+
- type: mrr_at_20
|
732 |
+
value: 18.598
|
733 |
+
- type: mrr_at_3
|
734 |
+
value: 17.0
|
735 |
+
- type: mrr_at_5
|
736 |
+
value: 17.681
|
737 |
+
- type: ndcg_at_1
|
738 |
+
value: 14.285999999999998
|
739 |
+
- type: ndcg_at_10
|
740 |
+
value: 16.447
|
741 |
+
- type: ndcg_at_100
|
742 |
+
value: 20.617
|
743 |
+
- type: ndcg_at_1000
|
744 |
+
value: 27.589000000000002
|
745 |
+
- type: ndcg_at_20
|
746 |
+
value: 17.455000000000002
|
747 |
+
- type: ndcg_at_3
|
748 |
+
value: 14.540000000000001
|
749 |
+
- type: ndcg_at_5
|
750 |
+
value: 15.084
|
751 |
+
- type: precision_at_1
|
752 |
+
value: 14.285999999999998
|
753 |
+
- type: precision_at_10
|
754 |
+
value: 3.698
|
755 |
+
- type: precision_at_100
|
756 |
+
value: 0.734
|
757 |
+
- type: precision_at_1000
|
758 |
+
value: 0.18
|
759 |
+
- type: precision_at_20
|
760 |
+
value: 2.163
|
761 |
+
- type: precision_at_3
|
762 |
+
value: 8.366999999999999
|
763 |
+
- type: precision_at_5
|
764 |
+
value: 5.928
|
765 |
+
- type: recall_at_1
|
766 |
+
value: 9.437
|
767 |
+
- type: recall_at_10
|
768 |
+
value: 20.16
|
769 |
+
- type: recall_at_100
|
770 |
+
value: 38.527
|
771 |
+
- type: recall_at_1000
|
772 |
+
value: 85.102
|
773 |
+
- type: recall_at_20
|
774 |
+
value: 23.632
|
775 |
+
- type: recall_at_3
|
776 |
+
value: 14.562
|
777 |
+
- type: recall_at_5
|
778 |
+
value: 16.8
|
779 |
+
|
780 |
+
language:
|
781 |
+
- fr
|
782 |
+
---
|
783 |
+
|
784 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
785 |
+
should probably proofread and complete it, then remove this comment. -->
|
786 |
+
|
787 |
+
# llm2vec-croissant-mntp
|
788 |
+
|
789 |
+
This model is a fine-tuned version of [croissantllm/CroissantCool-v0.2](https://huggingface.co/croissantllm/CroissantCool-v0.2) on [asi/wikitext_fr](asi/wikitext_fr).
|
790 |
+
It achieves the following results on the evaluation set:
|
791 |
+
- Loss: 1.8867
|
792 |
+
- Accuracy: 0.6078
|
793 |
+
|
794 |
+
## Model description
|
795 |
+
|
796 |
+
More information needed
|
797 |
+
|
798 |
+
## Intended uses & limitations
|
799 |
+
|
800 |
+
More information needed
|
801 |
+
|
802 |
+
## Training and evaluation data
|
803 |
+
|
804 |
+
More information needed
|
805 |
+
|
806 |
+
## Training procedure
|
807 |
+
|
808 |
+
### Training hyperparameters
|
809 |
+
|
810 |
+
The following hyperparameters were used during training:
|
811 |
+
- learning_rate: 5e-05
|
812 |
+
- train_batch_size: 32
|
813 |
+
- eval_batch_size: 32
|
814 |
+
- seed: 42
|
815 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
816 |
+
- lr_scheduler_type: linear
|
817 |
+
- num_epochs: 3.0
|
818 |
+
|
819 |
+
### Training results
|
820 |
+
|
821 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
822 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|
|
823 |
+
| No log | 0.0884 | 100 | 4.7866 | 0.1990 |
|
824 |
+
| No log | 0.1768 | 200 | 4.0496 | 0.3309 |
|
825 |
+
| No log | 0.2653 | 300 | 3.6525 | 0.3779 |
|
826 |
+
| No log | 0.3537 | 400 | 3.2410 | 0.4258 |
|
827 |
+
| 3.9116 | 0.4421 | 500 | 3.6305 | 0.3912 |
|
828 |
+
| 3.9116 | 0.5305 | 600 | 3.1770 | 0.4406 |
|
829 |
+
| 3.9116 | 0.6189 | 700 | 2.4478 | 0.5199 |
|
830 |
+
| 3.9116 | 0.7073 | 800 | 2.2383 | 0.5508 |
|
831 |
+
| 3.9116 | 0.7958 | 900 | 2.1547 | 0.5635 |
|
832 |
+
| 2.4568 | 0.8842 | 1000 | 2.0868 | 0.5759 |
|
833 |
+
| 2.4568 | 0.9726 | 1100 | 2.0399 | 0.5820 |
|
834 |
+
| 2.4568 | 1.0610 | 1200 | 2.0102 | 0.5873 |
|
835 |
+
| 2.4568 | 1.1494 | 1300 | 1.9805 | 0.5897 |
|
836 |
+
| 2.4568 | 1.2378 | 1400 | 1.9590 | 0.5955 |
|
837 |
+
| 1.9305 | 1.3263 | 1500 | 1.9381 | 0.5982 |
|
838 |
+
| 1.9305 | 1.4147 | 1600 | 1.9249 | 0.5995 |
|
839 |
+
| 1.9305 | 1.5031 | 1700 | 1.9223 | 0.6017 |
|
840 |
+
| 1.9305 | 1.5915 | 1800 | 1.9091 | 0.6037 |
|
841 |
+
| 1.9305 | 1.6799 | 1900 | 1.9038 | 0.6042 |
|
842 |
+
| 1.8511 | 1.7683 | 2000 | 1.8982 | 0.6045 |
|
843 |
+
| 1.8511 | 1.8568 | 2100 | 1.8924 | 0.6060 |
|
844 |
+
| 1.8511 | 1.9452 | 2200 | 1.8844 | 0.6072 |
|
845 |
+
| 1.8511 | 2.0336 | 2300 | 1.8873 | 0.6087 |
|
846 |
+
| 1.8511 | 2.1220 | 2400 | 1.8889 | 0.6068 |
|
847 |
+
| 1.8197 | 2.2104 | 2500 | 1.8848 | 0.6080 |
|
848 |
+
| 1.8197 | 2.2989 | 2600 | 1.8736 | 0.6091 |
|
849 |
+
| 1.8197 | 2.3873 | 2700 | 1.8858 | 0.6072 |
|
850 |
+
| 1.8197 | 2.4757 | 2800 | 1.8814 | 0.6088 |
|
851 |
+
| 1.8197 | 2.5641 | 2900 | 1.8649 | 0.6103 |
|
852 |
+
| 1.8116 | 2.6525 | 3000 | 1.8647 | 0.6091 |
|
853 |
+
| 1.8116 | 2.7409 | 3100 | 1.8755 | 0.6101 |
|
854 |
+
| 1.8116 | 2.8294 | 3200 | 1.8755 | 0.6099 |
|
855 |
+
| 1.8116 | 2.9178 | 3300 | 1.8867 | 0.6078 |
|
856 |
+
|
857 |
+
|
858 |
+
### Framework versions
|
859 |
+
|
860 |
+
- Transformers 4.40.2
|
861 |
+
- Pytorch 2.0.1+cu118
|
862 |
+
- Datasets 2.19.1
|
863 |
+
- Tokenizers 0.19.1
|