Initial commit.
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1268.47 +/- 294.88
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c929a29a3341e3000564d502c6ea47210da76b3250a4e8bbf679bd67fe4dfb73
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc65a2b98b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc65a2b9940>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc65a2b99d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc65a2b9a60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc65a2b9af0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc65a2b9b80>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc65a2b9c10>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc65a2b9ca0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc65a2b9d30>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc65a2b9dc0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc65a2b9e50>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc65a2b9ee0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fc65a2b7570>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2500000,
|
63 |
+
"_total_timesteps": 2500000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674067839770982957,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAH1Mh749nna+1VDTPuwBAr+n/yg/nZZAPriM+r6wDAy/f9I3v1Dg975Kfcw+yenXPTUseb+PJ0O/UMokPw/dir5X6ci8g5Ajv4UAMz7AKpg+ZW0XPnuysb+p6pE/r50Ivtm6QT+kbq4+SZD6Phmadb9PobM/Hr1Jvuag4D4oGgE/q/kVwPkay77j/IW/CWXLv2xhpT82g7W8cCL3P8yECr2aDde/S0QpPbUnTD7RKAy/Wj0DwE6LNL/H/EQ/hn+LvC+DiL71FWO/VJPWvlh/AMCJJKm/pG6uPkmQ+j4ZmnW/ZduQv4GNij85DAo/n3zDv/rl2r59rcc/0pOUv2vuEj9SH4i/z7O7PxDIZb9ha5I+8jWCvOFJtT8QoVA/XsxlvYWY2L77uZQ/2AsKv/IuoL4vc4q//hLGP8TsqD4PqR0/2bpBP6Rurj5JkPo+TGuFP5Rl0D75rxS/F4EaPrL99T5rOca/IpcKP0r+Fj4fv1u/ZPFpPmpjzT+0BJw/cq0fvYwIwL9zFDO/a/1VvmThor80H4a/2GCCPkqaRD84Ove7sqdlPh3yTz+PMs8+gK9Fv9m6QT+kbq4+SZD6Phmadb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABAsTe2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAwMG5PQAAAAB8JwHAAAAAAAyuBj0AAAAABKTdPwAAAADudZk9AAAAANKw7D8AAAAAnU4IPgAAAAD0nea/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoqyitgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMmNWD0AAAAAhlj1vwAAAADRnMe9AAAAAHMT6j8AAAAACqocvQAAAACicu8/AAAAAA9PwTwAAAAAOZ/zvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM8JZjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDylRC8AAAAANVJ/b8AAAAAXi3RvAAAAAAuCvU/AAAAAFEsCD4AAAAA4fLyPwAAAADhP5M9AAAAAKUO/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOexe2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWi2FvQAAAAAZ++q/AAAAAECEuDwAAAAAVu8AQAAAAAAk9Ou9AAAAAPf86T8AAAAAqnaIPQAAAACeF+i/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJpE1qZc9nuMAWyUTegDjAF0lEdAr+eKk2xY73V9lChoBkdAljXsp1A7gmgHTegDaAhHQK/q0BUaQ3h1fZQoaAZHQJmne7Xg9/1oB03oA2gIR0Cv6yxHPNVzdX2UKGgGR0CXNKQFLWZraAdN6ANoCEdAr+tmS2Yv4HV9lChoBkdAm7XG4EwFkmgHTegDaAhHQK/0bf8/D+B1fZQoaAZHQJywPpljEvVoB03oA2gIR0Cv964HX2/SdX2UKGgGR0CV5FQFLWZraAdN6ANoCEdAr/gAE6kqMHV9lChoBkdAmqiun2qT82gHTegDaAhHQK/4MZG8VYZ1fZQoaAZHQJdHxLQHAypoB03oA2gIR0CwAJq1kUbldX2UKGgGR0CYhYYYBNmEaAdN6ANoCEdAsAJD+ERJ3HV9lChoBkdAmLsrQ5WBBmgHTegDaAhHQLACbVd5Y5l1fZQoaAZHQJWHoEeQuEpoB03oA2gIR0CwAoXf2saLdX2UKGgGR0CYPfhOxjaxaAdN6ANoCEdAsAceZfD1oXV9lChoBkdAi+aZ8KG+K2gHTegDaAhHQLAIzNorWiF1fZQoaAZHQJhpUKc/dIpoB03oA2gIR0CwCPQMhHLBdX2UKGgGR0CYL7BE8aGYaAdN6ANoCEdAsAkPvCuU2XV9lChoBkdAksIAHzH0b2gHTegDaAhHQLANqD3/PxB1fZQoaAZHQJgwUVuaWopoB03oA2gIR0CwD0tQTEiudX2UKGgGR0CZ/y3+uNgjaAdN6ANoCEdAsA9y69TP0XV9lChoBkdAnHpdMwlByGgHTegDaAhHQLAPiydWhh91fZQoaAZHQJjn+6unuRdoB03oA2gIR0CwFAbMC9ytdX2UKGgGR0CaD73ai9IxaAdN6ANoCEdAsBWmV+qioXV9lChoBkdAmIxkqhDgImgHTegDaAhHQLAVzOC5Etx1fZQoaAZHQJh0halk6LhoB03oA2gIR0CwFeVtj0+UdX2UKGgGR0CbFQscABDHaAdN6ANoCEdAsBpbzTWoWHV9lChoBkdAm610hRqGlGgHTegDaAhHQLAcCBDohZB1fZQoaAZHQJlBV5cC5mRoB03oA2gIR0CwHDGRNh3JdX2UKGgGR0CZr4ZE2HclaAdN6ANoCEdAsBxLKPn0TXV9lChoBkdAm7fiIpH7QGgHTegDaAhHQLAgtWCEpRZ1fZQoaAZHQJv9N5rxiG5oB03oA2gIR0CwIlsxTKkmdX2UKGgGR0Cctnj4YaYNaAdN6ANoCEdAsCKCrmyPdXV9lChoBkdAmTMGN70Fr2gHTegDaAhHQLAinWkadc11fZQoaAZHQJ1Xco3Jgb9oB03oA2gIR0CwJzapPykLdX2UKGgGR0CNVD0WdmQKaAdN6ANoCEdAsCkUn6VMVXV9lChoBkdAnAYAO4G2TmgHTegDaAhHQLApX6vq1PZ1fZQoaAZHQJi0die/YapoB03oA2gIR0CwKZfBnBcidX2UKGgGR0CaFznoxHoYaAdN6ANoCEdAsDHRzU7SzHV9lChoBkdAkmIc50bLlmgHTegDaAhHQLAzt6pHZsd1fZQoaAZHQJj8QlLOAy5oB03oA2gIR0CwM9+PJaJRdX2UKGgGR0CbtrnJ1aGIaAdN6ANoCEdAsDP4aYNRWXV9lChoBkdAlK0jgQ6IWWgHTegDaAhHQLA4j4Cp3ot1fZQoaAZHQJl/0js2NvRoB03oA2gIR0CwOjnuy/sWdX2UKGgGR0CVw0t52QnyaAdN6ANoCEdAsDpjaGpMpXV9lChoBkdAleatFnZkCmgHTegDaAhHQLA6fODrZ8N1fZQoaAZHQJgl5KcurZJoB03oA2gIR0CwPvkJWvKVdX2UKGgGR0CaceBH09QoaAdN6ANoCEdAsECZGOMl1XV9lChoBkdAmOcxdld1MmgHTegDaAhHQLBAwSiM5wR1fZQoaAZHQJldR/PPcBVoB03oA2gIR0CwQNhqfvnbdX2UKGgGR0CWLfL7GecyaAdN6ANoCEdAsEVbL8rI53V9lChoBkdAmwKHck+otWgHTegDaAhHQLBHACrcTJ11fZQoaAZHQJrKvixVyWBoB03oA2gIR0CwRyiz5XU6dX2UKGgGR0CZBl+V1Oj7aAdN6ANoCEdAsEdBvfj0c3V9lChoBkdAmaopiZv1lGgHTegDaAhHQLBLy8BuGbl1fZQoaAZHQJsAQJF9a2ZoB03oA2gIR0CwTWlkQPI5dX2UKGgGR0CfeJL3bmEHaAdN6ANoCEdAsE2PeLvTgHV9lChoBkdAmrFifpUxVWgHTegDaAhHQLBNqtfXwsp1fZQoaAZHQJqGWgte2NNoB03oA2gIR0CwUiv8IiTudX2UKGgGR0CaFLQg9vCNaAdN6ANoCEdAsFPTmq5sj3V9lChoBkdAm67CLAHmimgHTegDaAhHQLBT/AzpHI91fZQoaAZHQJv1yjHn2ZloB03oA2gIR0CwVBPNzKcNdX2UKGgGR0CXx9TtsvZiaAdN6ANoCEdAsFiVaOgg5nV9lChoBkdAk8Db6tT1kGgHTegDaAhHQLBaO+Eh7md1fZQoaAZHQJJrhOxjawloB03oA2gIR0CwWmMK9f1IdX2UKGgGR0CSzt03wTdtaAdN6ANoCEdAsFp6Lfk3j3V9lChoBkdAldTYSg5BC2gHTegDaAhHQLBfCgqVhTh1fZQoaAZHQJBK8J8fFJhoB03oA2gIR0CwYLCwOe8PdX2UKGgGR0CU56HMlkYoaAdN6ANoCEdAsGDZ5cC5mXV9lChoBkdAlz37gbZOBWgHTegDaAhHQLBg8rhzeXR1fZQoaAZHQJlED1yvLYBoB03oA2gIR0CwZV0R3/xUdX2UKGgGR0CXFgFtbcGkaAdN6ANoCEdAsGcMNx2jf3V9lChoBkdAl9f9ayKNymgHTegDaAhHQLBnN27FsHl1fZQoaAZHQJqjPtfG+9JoB03oA2gIR0CwZ1AwXZXddX2UKGgGR0CZ2DbuMMqjaAdN6ANoCEdAsGvNOwgTy3V9lChoBkdAl6znJDE3sGgHTegDaAhHQLBtbsHjZL91fZQoaAZHQJjKaY1He8BoB03oA2gIR0CwbZRS5y2hdX2UKGgGR0CZA2JOFg2IaAdN6ANoCEdAsG2sDYAbQ3V9lChoBkdAlReIOpbUw2gHTegDaAhHQLByKGvOhTR1fZQoaAZHQJLYbFbVz6toB03oA2gIR0Cwc8pOSGJvdX2UKGgGR0CUij5wwTM8aAdN6ANoCEdAsHP20Sh8IHV9lChoBkdAmbfa1b7j1mgHTegDaAhHQLB0EI2wV0t1fZQoaAZHQJZ0GwD/2kBoB03oA2gIR0CweIxi9ZiedX2UKGgGR0CW8IVBD5TIaAdN6ANoCEdAsHotuk1uSHV9lChoBkdAlc1LVSXMQmgHTegDaAhHQLB6VoPkJa91fZQoaAZHQJrPIE1VHWloB03oA2gIR0Cwem72xptadX2UKGgGR0CYcGMB6rvLaAdN6ANoCEdAsH8h6zE74nV9lChoBkdAkmLJ9/jKgmgHTegDaAhHQLCAymz0HyF1fZQoaAZHQJabEGRmseZoB03oA2gIR0CwgPV1Oj7AdX2UKGgGR0CK9EUZeiSJaAdN6ANoCEdAsIEOBTXJ5nV9lChoBkdAkZIpQxesxWgHTegDaAhHQLCFjx1gYxd1fZQoaAZHQJC9qSzPa+NoB03oA2gIR0Cwhz4NRWLhdX2UKGgGR0CQAlQz1sciaAdN6ANoCEdAsIdsqWkadnV9lChoBkdAkbhteD3/P2gHTegDaAhHQLCHhAVO9Fp1fZQoaAZHQIkTxr56+nJoB03oA2gIR0CwjBXxjJ+2dX2UKGgGR0CXhRrjYI0JaAdN6ANoCEdAsI2wF5fMOnV9lChoBkdAlHOUEkjX4GgHTegDaAhHQLCN1+JxecB1fZQoaAZHQJVS9LYf4h5oB03oA2gIR0Cwje9cry2AdX2UKGgGR0CXgbsGxD9gaAdN6ANoCEdAsJJwYR/ViHV9lChoBkdAjRp2ll9SdmgHTegDaAhHQLCUFF98Z1p1fZQoaAZHQJZSPlmvnr9oB03oA2gIR0CwlD0snRb9dX2UKGgGR0CVX21qFh5PaAdN6ANoCEdAsJRUCeVcEHVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 78125,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de3a845b8d8954a57225c0e338e745beb439d1df585277c26fa999bd95dc8c55
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1a861a7086685099e1b62c35006c5cceb0ed695a00c1c8165d8f7af5f571294
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc65a2b98b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc65a2b9940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc65a2b99d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc65a2b9a60>", "_build": "<function ActorCriticPolicy._build at 0x7fc65a2b9af0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc65a2b9b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc65a2b9c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc65a2b9ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc65a2b9d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc65a2b9dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc65a2b9e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc65a2b9ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc65a2b7570>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2500000, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674067839770982957, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAH1Mh749nna+1VDTPuwBAr+n/yg/nZZAPriM+r6wDAy/f9I3v1Dg975Kfcw+yenXPTUseb+PJ0O/UMokPw/dir5X6ci8g5Ajv4UAMz7AKpg+ZW0XPnuysb+p6pE/r50Ivtm6QT+kbq4+SZD6Phmadb9PobM/Hr1Jvuag4D4oGgE/q/kVwPkay77j/IW/CWXLv2xhpT82g7W8cCL3P8yECr2aDde/S0QpPbUnTD7RKAy/Wj0DwE6LNL/H/EQ/hn+LvC+DiL71FWO/VJPWvlh/AMCJJKm/pG6uPkmQ+j4ZmnW/ZduQv4GNij85DAo/n3zDv/rl2r59rcc/0pOUv2vuEj9SH4i/z7O7PxDIZb9ha5I+8jWCvOFJtT8QoVA/XsxlvYWY2L77uZQ/2AsKv/IuoL4vc4q//hLGP8TsqD4PqR0/2bpBP6Rurj5JkPo+TGuFP5Rl0D75rxS/F4EaPrL99T5rOca/IpcKP0r+Fj4fv1u/ZPFpPmpjzT+0BJw/cq0fvYwIwL9zFDO/a/1VvmThor80H4a/2GCCPkqaRD84Ove7sqdlPh3yTz+PMs8+gK9Fv9m6QT+kbq4+SZD6Phmadb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABAsTe2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAwMG5PQAAAAB8JwHAAAAAAAyuBj0AAAAABKTdPwAAAADudZk9AAAAANKw7D8AAAAAnU4IPgAAAAD0nea/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoqyitgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMmNWD0AAAAAhlj1vwAAAADRnMe9AAAAAHMT6j8AAAAACqocvQAAAACicu8/AAAAAA9PwTwAAAAAOZ/zvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM8JZjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDylRC8AAAAANVJ/b8AAAAAXi3RvAAAAAAuCvU/AAAAAFEsCD4AAAAA4fLyPwAAAADhP5M9AAAAAKUO/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADOexe2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWi2FvQAAAAAZ++q/AAAAAECEuDwAAAAAVu8AQAAAAAAk9Ou9AAAAAPf86T8AAAAAqnaIPQAAAACeF+i/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJpE1qZc9nuMAWyUTegDjAF0lEdAr+eKk2xY73V9lChoBkdAljXsp1A7gmgHTegDaAhHQK/q0BUaQ3h1fZQoaAZHQJmne7Xg9/1oB03oA2gIR0Cv6yxHPNVzdX2UKGgGR0CXNKQFLWZraAdN6ANoCEdAr+tmS2Yv4HV9lChoBkdAm7XG4EwFkmgHTegDaAhHQK/0bf8/D+B1fZQoaAZHQJywPpljEvVoB03oA2gIR0Cv964HX2/SdX2UKGgGR0CV5FQFLWZraAdN6ANoCEdAr/gAE6kqMHV9lChoBkdAmqiun2qT82gHTegDaAhHQK/4MZG8VYZ1fZQoaAZHQJdHxLQHAypoB03oA2gIR0CwAJq1kUbldX2UKGgGR0CYhYYYBNmEaAdN6ANoCEdAsAJD+ERJ3HV9lChoBkdAmLsrQ5WBBmgHTegDaAhHQLACbVd5Y5l1fZQoaAZHQJWHoEeQuEpoB03oA2gIR0CwAoXf2saLdX2UKGgGR0CYPfhOxjaxaAdN6ANoCEdAsAceZfD1oXV9lChoBkdAi+aZ8KG+K2gHTegDaAhHQLAIzNorWiF1fZQoaAZHQJhpUKc/dIpoB03oA2gIR0CwCPQMhHLBdX2UKGgGR0CYL7BE8aGYaAdN6ANoCEdAsAkPvCuU2XV9lChoBkdAksIAHzH0b2gHTegDaAhHQLANqD3/PxB1fZQoaAZHQJgwUVuaWopoB03oA2gIR0CwD0tQTEiudX2UKGgGR0CZ/y3+uNgjaAdN6ANoCEdAsA9y69TP0XV9lChoBkdAnHpdMwlByGgHTegDaAhHQLAPiydWhh91fZQoaAZHQJjn+6unuRdoB03oA2gIR0CwFAbMC9ytdX2UKGgGR0CaD73ai9IxaAdN6ANoCEdAsBWmV+qioXV9lChoBkdAmIxkqhDgImgHTegDaAhHQLAVzOC5Etx1fZQoaAZHQJh0halk6LhoB03oA2gIR0CwFeVtj0+UdX2UKGgGR0CbFQscABDHaAdN6ANoCEdAsBpbzTWoWHV9lChoBkdAm610hRqGlGgHTegDaAhHQLAcCBDohZB1fZQoaAZHQJlBV5cC5mRoB03oA2gIR0CwHDGRNh3JdX2UKGgGR0CZr4ZE2HclaAdN6ANoCEdAsBxLKPn0TXV9lChoBkdAm7fiIpH7QGgHTegDaAhHQLAgtWCEpRZ1fZQoaAZHQJv9N5rxiG5oB03oA2gIR0CwIlsxTKkmdX2UKGgGR0Cctnj4YaYNaAdN6ANoCEdAsCKCrmyPdXV9lChoBkdAmTMGN70Fr2gHTegDaAhHQLAinWkadc11fZQoaAZHQJ1Xco3Jgb9oB03oA2gIR0CwJzapPykLdX2UKGgGR0CNVD0WdmQKaAdN6ANoCEdAsCkUn6VMVXV9lChoBkdAnAYAO4G2TmgHTegDaAhHQLApX6vq1PZ1fZQoaAZHQJi0die/YapoB03oA2gIR0CwKZfBnBcidX2UKGgGR0CaFznoxHoYaAdN6ANoCEdAsDHRzU7SzHV9lChoBkdAkmIc50bLlmgHTegDaAhHQLAzt6pHZsd1fZQoaAZHQJj8QlLOAy5oB03oA2gIR0CwM9+PJaJRdX2UKGgGR0CbtrnJ1aGIaAdN6ANoCEdAsDP4aYNRWXV9lChoBkdAlK0jgQ6IWWgHTegDaAhHQLA4j4Cp3ot1fZQoaAZHQJl/0js2NvRoB03oA2gIR0CwOjnuy/sWdX2UKGgGR0CVw0t52QnyaAdN6ANoCEdAsDpjaGpMpXV9lChoBkdAleatFnZkCmgHTegDaAhHQLA6fODrZ8N1fZQoaAZHQJgl5KcurZJoB03oA2gIR0CwPvkJWvKVdX2UKGgGR0CaceBH09QoaAdN6ANoCEdAsECZGOMl1XV9lChoBkdAmOcxdld1MmgHTegDaAhHQLBAwSiM5wR1fZQoaAZHQJldR/PPcBVoB03oA2gIR0CwQNhqfvnbdX2UKGgGR0CWLfL7GecyaAdN6ANoCEdAsEVbL8rI53V9lChoBkdAmwKHck+otWgHTegDaAhHQLBHACrcTJ11fZQoaAZHQJrKvixVyWBoB03oA2gIR0CwRyiz5XU6dX2UKGgGR0CZBl+V1Oj7aAdN6ANoCEdAsEdBvfj0c3V9lChoBkdAmaopiZv1lGgHTegDaAhHQLBLy8BuGbl1fZQoaAZHQJsAQJF9a2ZoB03oA2gIR0CwTWlkQPI5dX2UKGgGR0CfeJL3bmEHaAdN6ANoCEdAsE2PeLvTgHV9lChoBkdAmrFifpUxVWgHTegDaAhHQLBNqtfXwsp1fZQoaAZHQJqGWgte2NNoB03oA2gIR0CwUiv8IiTudX2UKGgGR0CaFLQg9vCNaAdN6ANoCEdAsFPTmq5sj3V9lChoBkdAm67CLAHmimgHTegDaAhHQLBT/AzpHI91fZQoaAZHQJv1yjHn2ZloB03oA2gIR0CwVBPNzKcNdX2UKGgGR0CXx9TtsvZiaAdN6ANoCEdAsFiVaOgg5nV9lChoBkdAk8Db6tT1kGgHTegDaAhHQLBaO+Eh7md1fZQoaAZHQJJrhOxjawloB03oA2gIR0CwWmMK9f1IdX2UKGgGR0CSzt03wTdtaAdN6ANoCEdAsFp6Lfk3j3V9lChoBkdAldTYSg5BC2gHTegDaAhHQLBfCgqVhTh1fZQoaAZHQJBK8J8fFJhoB03oA2gIR0CwYLCwOe8PdX2UKGgGR0CU56HMlkYoaAdN6ANoCEdAsGDZ5cC5mXV9lChoBkdAlz37gbZOBWgHTegDaAhHQLBg8rhzeXR1fZQoaAZHQJlED1yvLYBoB03oA2gIR0CwZV0R3/xUdX2UKGgGR0CXFgFtbcGkaAdN6ANoCEdAsGcMNx2jf3V9lChoBkdAl9f9ayKNymgHTegDaAhHQLBnN27FsHl1fZQoaAZHQJqjPtfG+9JoB03oA2gIR0CwZ1AwXZXddX2UKGgGR0CZ2DbuMMqjaAdN6ANoCEdAsGvNOwgTy3V9lChoBkdAl6znJDE3sGgHTegDaAhHQLBtbsHjZL91fZQoaAZHQJjKaY1He8BoB03oA2gIR0CwbZRS5y2hdX2UKGgGR0CZA2JOFg2IaAdN6ANoCEdAsG2sDYAbQ3V9lChoBkdAlReIOpbUw2gHTegDaAhHQLByKGvOhTR1fZQoaAZHQJLYbFbVz6toB03oA2gIR0Cwc8pOSGJvdX2UKGgGR0CUij5wwTM8aAdN6ANoCEdAsHP20Sh8IHV9lChoBkdAmbfa1b7j1mgHTegDaAhHQLB0EI2wV0t1fZQoaAZHQJZ0GwD/2kBoB03oA2gIR0CweIxi9ZiedX2UKGgGR0CW8IVBD5TIaAdN6ANoCEdAsHotuk1uSHV9lChoBkdAlc1LVSXMQmgHTegDaAhHQLB6VoPkJa91fZQoaAZHQJrPIE1VHWloB03oA2gIR0Cwem72xptadX2UKGgGR0CYcGMB6rvLaAdN6ANoCEdAsH8h6zE74nV9lChoBkdAkmLJ9/jKgmgHTegDaAhHQLCAymz0HyF1fZQoaAZHQJabEGRmseZoB03oA2gIR0CwgPV1Oj7AdX2UKGgGR0CK9EUZeiSJaAdN6ANoCEdAsIEOBTXJ5nV9lChoBkdAkZIpQxesxWgHTegDaAhHQLCFjx1gYxd1fZQoaAZHQJC9qSzPa+NoB03oA2gIR0Cwhz4NRWLhdX2UKGgGR0CQAlQz1sciaAdN6ANoCEdAsIdsqWkadnV9lChoBkdAkbhteD3/P2gHTegDaAhHQLCHhAVO9Fp1fZQoaAZHQIkTxr56+nJoB03oA2gIR0CwjBXxjJ+2dX2UKGgGR0CXhRrjYI0JaAdN6ANoCEdAsI2wF5fMOnV9lChoBkdAlHOUEkjX4GgHTegDaAhHQLCN1+JxecB1fZQoaAZHQJVS9LYf4h5oB03oA2gIR0Cwje9cry2AdX2UKGgGR0CXgbsGxD9gaAdN6ANoCEdAsJJwYR/ViHV9lChoBkdAjRp2ll9SdmgHTegDaAhHQLCUFF98Z1p1fZQoaAZHQJZSPlmvnr9oB03oA2gIR0CwlD0snRb9dX2UKGgGR0CVX21qFh5PaAdN6ANoCEdAsJRUCeVcEHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 78125, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2cc57049333e5052263c4f8931b45cd90197be1d7df9496076d2046e8ba8159
|
3 |
+
size 1016217
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1268.470102054323, "std_reward": 294.8811574025937, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T20:10:09.973001"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a5896f373f8d3c022517160bf3712a8d9334eb91a985948696d4c98663b77df
|
3 |
+
size 2521
|