Agneev commited on
Commit
12d653e
1 Parent(s): d7ed029

First attempt at Lunar lander v2 agent training

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 297.47 +/- 14.41
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9609aa0310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9609aa03a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9609aa0430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9609aa04c0>", "_build": "<function ActorCriticPolicy._build at 0x7f9609aa0550>", "forward": "<function ActorCriticPolicy.forward at 0x7f9609aa05e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9609aa0670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9609aa0700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9609aa0790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9609aa0820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9609aa08b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9609aa0940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9609a9b870>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678195325052651331, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABocMr00ab4+mQipPb6KPL/0HJO9HWUCPgAAAAAAAAAAzfQdvBT6l7qmriA1I1cNMK4I77pLGGO0AACAPwAAgD/AgOO9k6WQPqrEhT7sxhu/CZmrvYghTD4AAAAAAAAAADMpDTzDsUG6kABNMqSmMy+Ygle7ImuesgAAgD8AAIA/BigcPhs55j2KM9q+IXwIvxsMLb3N6lK+AAAAAAAAAABmbcY8XDcjuu6fD7ReZbAuOF4HO8xVljMAAIA/AACAPxqLLj0Yq60/Ji3/PvCwyb4oXa07MrEXPgAAAAAAAAAAADDwOo5CrLwsikG936Z+PRqJhT2tNu27AACAPwAAgD8Nz8y9hqSxP31a8r4q55K++uwovvpv874AAAAAAAAAADNhgLwaHcA/AkjlvQqMPj4NfmO9MbQXvgAAAAAAAAAA+sQqvpdFVD/2t++9jvcnv0c74r5GOZw9AAAAAAAAAADNliO8w0FmuiYmOrPUyaKoJp59uo43xDMAAIA/AACAP+2Gmj4qi4c/ln+SPoKNM78dKgY/5pnaPAAAAAAAAAAAZmbGOUi/9LrGkzk8fn+QPBupq7toQXo9AACAPwAAgD+mC769LM1vPttPBD+hGfm+PxtwPnvhgz4AAAAAAAAAAHpESz4mqZE+/8wEv6zd/r671N09VgHTvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfXiWIOMRcUCUhpRSlIwBbJRLsowBdJRHQMDB2Q176YV1fZQoaAZoCWgPQwheEfxv5VlyQJSGlFKUaBVLn2gWR0DAweIjUutfdX2UKGgGaAloD0MIIhlybD0fcUCUhpRSlGgVS69oFkdAwMHiFJxvN3V9lChoBmgJaA9DCNVBXg+muHFAlIaUUpRoFUu2aBZHQMDB6GbkOqh1fZQoaAZoCWgPQwilhjYAm5ZxQJSGlFKUaBVLrWgWR0DAwe50wJw9dX2UKGgGaAloD0MI8ztNZnwic0CUhpRSlGgVS8xoFkdAwMH4sBhhIHV9lChoBmgJaA9DCNUGJ6Kf63JAlIaUUpRoFUuUaBZHQMDB+hrnDBN1fZQoaAZoCWgPQwhIbHcPUB5xQJSGlFKUaBVLqmgWR0DAwfvNC7btdX2UKGgGaAloD0MIUrXdBN8Pc0CUhpRSlGgVS7hoFkdAwMIFe40/GHV9lChoBmgJaA9DCJ2C/GykXHFAlIaUUpRoFUu1aBZHQMDCDKHXVb11fZQoaAZoCWgPQwhsX0AvXClyQJSGlFKUaBVLwWgWR0DAwhZKvmozdX2UKGgGaAloD0MIP4wQHm1ucECUhpRSlGgVS59oFkdAwMIcFB6a9nV9lChoBmgJaA9DCI0JMZdUjHJAlIaUUpRoFUu+aBZHQMDCJ35N47l1fZQoaAZoCWgPQwjm6scmuRByQJSGlFKUaBVLnWgWR0DAwi65RTCMdX2UKGgGaAloD0MIBBvXv2usc0CUhpRSlGgVS8JoFkdAwMI2RmseXHV9lChoBmgJaA9DCMpuZvSjAnFAlIaUUpRoFUusaBZHQMDCQhrN4aB1fZQoaAZoCWgPQwjItaFiXJRwQJSGlFKUaBVLpGgWR0DAwkbdSEUTdX2UKGgGaAloD0MI5SZqaa6lckCUhpRSlGgVS7poFkdAwMJVDgIhQnV9lChoBmgJaA9DCJijx+9tNHJAlIaUUpRoFUuyaBZHQMDCVqzJIUd1fZQoaAZoCWgPQwit9xvtuNNzQJSGlFKUaBVLsWgWR0DAwmiXdCVsdX2UKGgGaAloD0MIEDy+vStCc0CUhpRSlGgVS7FoFkdAwMJqB5ooNXV9lChoBmgJaA9DCO3vbI9eJ3JAlIaUUpRoFUu6aBZHQMDCcYs3AEd1fZQoaAZoCWgPQwg9EFmkybJxQJSGlFKUaBVLs2gWR0DAwnhBPbfxdX2UKGgGaAloD0MIAfkSKjgucUCUhpRSlGgVS7JoFkdAwMJ/QRf4RHV9lChoBmgJaA9DCLly9s6o63RAlIaUUpRoFUvjaBZHQMDCfjtgKF91fZQoaAZoCWgPQwhMw/ARsbhwQJSGlFKUaBVLomgWR0DAwo9xlxwRdX2UKGgGaAloD0MIqz/CMOA9aECUhpRSlGgVTegDaBZHQMDCkhGYrrh1fZQoaAZoCWgPQwjYuWkzjuNyQJSGlFKUaBVLwWgWR0DAwpIpWmxddX2UKGgGaAloD0MIgXnIlI+dckCUhpRSlGgVS8FoFkdAwMKXi83+/HV9lChoBmgJaA9DCNE8gEW+9XJAlIaUUpRoFUu3aBZHQMDCoZr56+p1fZQoaAZoCWgPQwjBqQ8kLxBxQJSGlFKUaBVLlWgWR0DAwqSo/A0sdX2UKGgGaAloD0MIfGMIAE62ckCUhpRSlGgVS6RoFkdAwMKpJU5uInV9lChoBmgJaA9DCBbaOc3Cg3JAlIaUUpRoFUu8aBZHQMDCq+z+m3x1fZQoaAZoCWgPQwhzvW2mQhJxQJSGlFKUaBVLkGgWR0DAwq/jdYW+dX2UKGgGaAloD0MIdXPxt73pckCUhpRSlGgVS7ZoFkdAwMLDZdOZcHV9lChoBmgJaA9DCGHCaFY2inFAlIaUUpRoFUuFaBZHQMDCxhS9/SZ1fZQoaAZoCWgPQwiiYTHqGghyQJSGlFKUaBVLq2gWR0DAws6E384xdX2UKGgGaAloD0MI1VsDWyUadECUhpRSlGgVS65oFkdAwMLRYK6WgXV9lChoBmgJaA9DCOPfZ1y4h3FAlIaUUpRoFUuzaBZHQMDC2rPMSsd1fZQoaAZoCWgPQwjxETElUgRyQJSGlFKUaBVLjWgWR0DAwuIA6uGLdX2UKGgGaAloD0MIXcE24skJdECUhpRSlGgVS8VoFkdAwMLwl+mWMXV9lChoBmgJaA9DCHiY9s09uHBAlIaUUpRoFUueaBZHQMDC8gMDwH91fZQoaAZoCWgPQwhsJt9sc+hxQJSGlFKUaBVLqWgWR0DAwvLHMlkZdX2UKGgGaAloD0MIUdzxJn+2ckCUhpRSlGgVS55oFkdAwMMHpqynk3V9lChoBmgJaA9DCAGkNnGyzHFAlIaUUpRoFUukaBZHQMDDCHF5v991fZQoaAZoCWgPQwg7NZcbjAJxQJSGlFKUaBVLsWgWR0DAwwvb212JdX2UKGgGaAloD0MIChFwCJXjckCUhpRSlGgVS+FoFkdAwMMS78Nx2nV9lChoBmgJaA9DCLHAV3Sr83NAlIaUUpRoFUvIaBZHQMDDFyoXKr91fZQoaAZoCWgPQwi6+NueIHtzQJSGlFKUaBVLvWgWR0DAwx5j2BatdX2UKGgGaAloD0MI1xh0QugKcECUhpRSlGgVS6toFkdAwMMtZDiOvXV9lChoBmgJaA9DCMlyEkrfs3NAlIaUUpRoFUuxaBZHQMDDLmt6ol51fZQoaAZoCWgPQwgf2scKfmJxQJSGlFKUaBVLomgWR0DAwzDqKP4mdX2UKGgGaAloD0MIq1s9J72xcUCUhpRSlGgVTS4BaBZHQMDDMWx6fJ51fZQoaAZoCWgPQwhXryKjQ+9wQJSGlFKUaBVLmGgWR0DAwzdPznRtdX2UKGgGaAloD0MIe75muexTdECUhpRSlGgVS7ZoFkdAwMM+SElE7XV9lChoBmgJaA9DCGpMiLnkjnJAlIaUUpRoFUuVaBZHQMDDS4ZuQ6p1fZQoaAZoCWgPQwiVfsLZbZZxQJSGlFKUaBVLxWgWR0DAw1biQ1aXdX2UKGgGaAloD0MIVKpE2Vs2c0CUhpRSlGgVS7FoFkdAwMNau0TlDHV9lChoBmgJaA9DCHZSX5b233FAlIaUUpRoFUugaBZHQMDDZg9mpVF1fZQoaAZoCWgPQwj3yrxVV+hyQJSGlFKUaBVLy2gWR0DAw2k6gdwOdX2UKGgGaAloD0MIDvW7sLUqcECUhpRSlGgVS6FoFkdAwMNp37DVIHV9lChoBmgJaA9DCIKOVrVkxnFAlIaUUpRoFUu1aBZHQMDDcWbPQfJ1fZQoaAZoCWgPQwi9xi5RPZdzQJSGlFKUaBVLsmgWR0DAw30189fUdX2UKGgGaAloD0MI9n6jHfcbc0CUhpRSlGgVS7poFkdAwMN9jbzshXV9lChoBmgJaA9DCPS/XItWBHFAlIaUUpRoFUubaBZHQMDDg8aGYa51fZQoaAZoCWgPQwiuuaP/pXRyQJSGlFKUaBVLoGgWR0DAw4lbu+h5dX2UKGgGaAloD0MI4stEEZLmcECUhpRSlGgVS8FoFkdAwMOLuVopQXV9lChoBmgJaA9DCAnAP6UKknJAlIaUUpRoFUuwaBZHQMDDmGDDjzZ1fZQoaAZoCWgPQwgHQrKASf1yQJSGlFKUaBVLp2gWR0DAw5t6mfoSdX2UKGgGaAloD0MIIc1YNB0/dECUhpRSlGgVS9NoFkdAwMOjbgTAWXV9lChoBmgJaA9DCK4RwTi4KnFAlIaUUpRoFUuzaBZHQMDDsWGRFJB1fZQoaAZoCWgPQwiCHf8FAgtyQJSGlFKUaBVLuWgWR0DAw8Ckfs/qdX2UKGgGaAloD0MI626e6tC5ckCUhpRSlGgVS8JoFkdAwMPKBsANonV9lChoBmgJaA9DCAqfrYODMm9AlIaUUpRoFUuRaBZHQMDD0YR/ViF1fZQoaAZoCWgPQwhOt+wQP7pzQJSGlFKUaBVLrGgWR0DAw9R9oexOdX2UKGgGaAloD0MIBDkoYSa+b0CUhpRSlGgVS5poFkdAwMPXqwhW53V9lChoBmgJaA9DCIZzDTP0InNAlIaUUpRoFUvJaBZHQMDD2jx0+1V1fZQoaAZoCWgPQwipE9BEGOdxQJSGlFKUaBVLy2gWR0DAw98dmxt6dX2UKGgGaAloD0MIsFkuG52Mc0CUhpRSlGgVS9loFkdAwMPmkO7QLXV9lChoBmgJaA9DCA9EFmniX3JAlIaUUpRoFUuWaBZHQMDD9O9nK4h1fZQoaAZoCWgPQwhWSs/0kvpxQJSGlFKUaBVLxmgWR0DAw/kYyfthdX2UKGgGaAloD0MIQ1ciUD1Vc0CUhpRSlGgVS8RoFkdAwMP98CxNZnV9lChoBmgJaA9DCDT4+8XssXJAlIaUUpRoFUvJaBZHQMDEA58BuGd1fZQoaAZoCWgPQwgOvjCZKs5yQJSGlFKUaBVLrmgWR0DAxAtVghKUdX2UKGgGaAloD0MIkC3L16W+cECUhpRSlGgVS5xoFkdAwMQOYl6Z6XV9lChoBmgJaA9DCGpOXmSCsHJAlIaUUpRoFU2CAWgWR0DAxA8qx1PndX2UKGgGaAloD0MI5BOy87Z+b0CUhpRSlGgVS4toFkdAwMQTHww0wnV9lChoBmgJaA9DCLJGPUQj5nFAlIaUUpRoFUvQaBZHQMDEFB6By0d1fZQoaAZoCWgPQwjvWddoOfpMQJSGlFKUaBVLgGgWR0DAxCK8xsVMdX2UKGgGaAloD0MIx/SEJZ7VcUCUhpRSlGgVS5toFkdAwMQw5e7cwnV9lChoBmgJaA9DCL5O6stSrnJAlIaUUpRoFUuoaBZHQMDEMuuRs/J1fZQoaAZoCWgPQwjQX+gRI/lyQJSGlFKUaBVLtWgWR0DAxDNT3qRmdX2UKGgGaAloD0MIwy6KHvjQcUCUhpRSlGgVS6BoFkdAwMQ7JXhfjXV9lChoBmgJaA9DCLJLVG+NHHJAlIaUUpRoFUuYaBZHQMDEPeNcW0t1fZQoaAZoCWgPQwjkwKvlzjhyQJSGlFKUaBVLvWgWR0DAxEEnZ00WdX2UKGgGaAloD0MIYHKjyFqacECUhpRSlGgVS59oFkdAwMRSjesPrnV9lChoBmgJaA9DCESGVbwR0XFAlIaUUpRoFUuvaBZHQMDEV/5k9U11fZQoaAZoCWgPQwgtfH2ti4ZwQJSGlFKUaBVLp2gWR0DAxGjUI9kjdX2UKGgGaAloD0MIjZduEgM3dECUhpRSlGgVS7poFkdAwMRsX9itrHV9lChoBmgJaA9DCAh1kUJZeHFAlIaUUpRoFUusaBZHQMDEbzkhib51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1530, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-Agneev.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f41dae37fbeefbcba8b3ddb0da2a549feeac3847d70f83a0484503355f88bd1f
3
+ size 147299
ppo-LunarLander-Agneev/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-Agneev/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9609aa0310>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9609aa03a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9609aa0430>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9609aa04c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9609aa0550>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9609aa05e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9609aa0670>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9609aa0700>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9609aa0790>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9609aa0820>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9609aa08b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9609aa0940>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f9609a9b870>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 5013504,
47
+ "_total_timesteps": 5000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678195325052651331,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABocMr00ab4+mQipPb6KPL/0HJO9HWUCPgAAAAAAAAAAzfQdvBT6l7qmriA1I1cNMK4I77pLGGO0AACAPwAAgD/AgOO9k6WQPqrEhT7sxhu/CZmrvYghTD4AAAAAAAAAADMpDTzDsUG6kABNMqSmMy+Ygle7ImuesgAAgD8AAIA/BigcPhs55j2KM9q+IXwIvxsMLb3N6lK+AAAAAAAAAABmbcY8XDcjuu6fD7ReZbAuOF4HO8xVljMAAIA/AACAPxqLLj0Yq60/Ji3/PvCwyb4oXa07MrEXPgAAAAAAAAAAADDwOo5CrLwsikG936Z+PRqJhT2tNu27AACAPwAAgD8Nz8y9hqSxP31a8r4q55K++uwovvpv874AAAAAAAAAADNhgLwaHcA/AkjlvQqMPj4NfmO9MbQXvgAAAAAAAAAA+sQqvpdFVD/2t++9jvcnv0c74r5GOZw9AAAAAAAAAADNliO8w0FmuiYmOrPUyaKoJp59uo43xDMAAIA/AACAP+2Gmj4qi4c/ln+SPoKNM78dKgY/5pnaPAAAAAAAAAAAZmbGOUi/9LrGkzk8fn+QPBupq7toQXo9AACAPwAAgD+mC769LM1vPttPBD+hGfm+PxtwPnvhgz4AAAAAAAAAAHpESz4mqZE+/8wEv6zd/r671N09VgHTvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.0027007999999999477,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfXiWIOMRcUCUhpRSlIwBbJRLsowBdJRHQMDB2Q176YV1fZQoaAZoCWgPQwheEfxv5VlyQJSGlFKUaBVLn2gWR0DAweIjUutfdX2UKGgGaAloD0MIIhlybD0fcUCUhpRSlGgVS69oFkdAwMHiFJxvN3V9lChoBmgJaA9DCNVBXg+muHFAlIaUUpRoFUu2aBZHQMDB6GbkOqh1fZQoaAZoCWgPQwilhjYAm5ZxQJSGlFKUaBVLrWgWR0DAwe50wJw9dX2UKGgGaAloD0MI8ztNZnwic0CUhpRSlGgVS8xoFkdAwMH4sBhhIHV9lChoBmgJaA9DCNUGJ6Kf63JAlIaUUpRoFUuUaBZHQMDB+hrnDBN1fZQoaAZoCWgPQwhIbHcPUB5xQJSGlFKUaBVLqmgWR0DAwfvNC7btdX2UKGgGaAloD0MIUrXdBN8Pc0CUhpRSlGgVS7hoFkdAwMIFe40/GHV9lChoBmgJaA9DCJ2C/GykXHFAlIaUUpRoFUu1aBZHQMDCDKHXVb11fZQoaAZoCWgPQwhsX0AvXClyQJSGlFKUaBVLwWgWR0DAwhZKvmozdX2UKGgGaAloD0MIP4wQHm1ucECUhpRSlGgVS59oFkdAwMIcFB6a9nV9lChoBmgJaA9DCI0JMZdUjHJAlIaUUpRoFUu+aBZHQMDCJ35N47l1fZQoaAZoCWgPQwjm6scmuRByQJSGlFKUaBVLnWgWR0DAwi65RTCMdX2UKGgGaAloD0MIBBvXv2usc0CUhpRSlGgVS8JoFkdAwMI2RmseXHV9lChoBmgJaA9DCMpuZvSjAnFAlIaUUpRoFUusaBZHQMDCQhrN4aB1fZQoaAZoCWgPQwjItaFiXJRwQJSGlFKUaBVLpGgWR0DAwkbdSEUTdX2UKGgGaAloD0MI5SZqaa6lckCUhpRSlGgVS7poFkdAwMJVDgIhQnV9lChoBmgJaA9DCJijx+9tNHJAlIaUUpRoFUuyaBZHQMDCVqzJIUd1fZQoaAZoCWgPQwit9xvtuNNzQJSGlFKUaBVLsWgWR0DAwmiXdCVsdX2UKGgGaAloD0MIEDy+vStCc0CUhpRSlGgVS7FoFkdAwMJqB5ooNXV9lChoBmgJaA9DCO3vbI9eJ3JAlIaUUpRoFUu6aBZHQMDCcYs3AEd1fZQoaAZoCWgPQwg9EFmkybJxQJSGlFKUaBVLs2gWR0DAwnhBPbfxdX2UKGgGaAloD0MIAfkSKjgucUCUhpRSlGgVS7JoFkdAwMJ/QRf4RHV9lChoBmgJaA9DCLly9s6o63RAlIaUUpRoFUvjaBZHQMDCfjtgKF91fZQoaAZoCWgPQwhMw/ARsbhwQJSGlFKUaBVLomgWR0DAwo9xlxwRdX2UKGgGaAloD0MIqz/CMOA9aECUhpRSlGgVTegDaBZHQMDCkhGYrrh1fZQoaAZoCWgPQwjYuWkzjuNyQJSGlFKUaBVLwWgWR0DAwpIpWmxddX2UKGgGaAloD0MIgXnIlI+dckCUhpRSlGgVS8FoFkdAwMKXi83+/HV9lChoBmgJaA9DCNE8gEW+9XJAlIaUUpRoFUu3aBZHQMDCoZr56+p1fZQoaAZoCWgPQwjBqQ8kLxBxQJSGlFKUaBVLlWgWR0DAwqSo/A0sdX2UKGgGaAloD0MIfGMIAE62ckCUhpRSlGgVS6RoFkdAwMKpJU5uInV9lChoBmgJaA9DCBbaOc3Cg3JAlIaUUpRoFUu8aBZHQMDCq+z+m3x1fZQoaAZoCWgPQwhzvW2mQhJxQJSGlFKUaBVLkGgWR0DAwq/jdYW+dX2UKGgGaAloD0MIdXPxt73pckCUhpRSlGgVS7ZoFkdAwMLDZdOZcHV9lChoBmgJaA9DCGHCaFY2inFAlIaUUpRoFUuFaBZHQMDCxhS9/SZ1fZQoaAZoCWgPQwiiYTHqGghyQJSGlFKUaBVLq2gWR0DAws6E384xdX2UKGgGaAloD0MI1VsDWyUadECUhpRSlGgVS65oFkdAwMLRYK6WgXV9lChoBmgJaA9DCOPfZ1y4h3FAlIaUUpRoFUuzaBZHQMDC2rPMSsd1fZQoaAZoCWgPQwjxETElUgRyQJSGlFKUaBVLjWgWR0DAwuIA6uGLdX2UKGgGaAloD0MIXcE24skJdECUhpRSlGgVS8VoFkdAwMLwl+mWMXV9lChoBmgJaA9DCHiY9s09uHBAlIaUUpRoFUueaBZHQMDC8gMDwH91fZQoaAZoCWgPQwhsJt9sc+hxQJSGlFKUaBVLqWgWR0DAwvLHMlkZdX2UKGgGaAloD0MIUdzxJn+2ckCUhpRSlGgVS55oFkdAwMMHpqynk3V9lChoBmgJaA9DCAGkNnGyzHFAlIaUUpRoFUukaBZHQMDDCHF5v991fZQoaAZoCWgPQwg7NZcbjAJxQJSGlFKUaBVLsWgWR0DAwwvb212JdX2UKGgGaAloD0MIChFwCJXjckCUhpRSlGgVS+FoFkdAwMMS78Nx2nV9lChoBmgJaA9DCLHAV3Sr83NAlIaUUpRoFUvIaBZHQMDDFyoXKr91fZQoaAZoCWgPQwi6+NueIHtzQJSGlFKUaBVLvWgWR0DAwx5j2BatdX2UKGgGaAloD0MI1xh0QugKcECUhpRSlGgVS6toFkdAwMMtZDiOvXV9lChoBmgJaA9DCMlyEkrfs3NAlIaUUpRoFUuxaBZHQMDDLmt6ol51fZQoaAZoCWgPQwgf2scKfmJxQJSGlFKUaBVLomgWR0DAwzDqKP4mdX2UKGgGaAloD0MIq1s9J72xcUCUhpRSlGgVTS4BaBZHQMDDMWx6fJ51fZQoaAZoCWgPQwhXryKjQ+9wQJSGlFKUaBVLmGgWR0DAwzdPznRtdX2UKGgGaAloD0MIe75muexTdECUhpRSlGgVS7ZoFkdAwMM+SElE7XV9lChoBmgJaA9DCGpMiLnkjnJAlIaUUpRoFUuVaBZHQMDDS4ZuQ6p1fZQoaAZoCWgPQwiVfsLZbZZxQJSGlFKUaBVLxWgWR0DAw1biQ1aXdX2UKGgGaAloD0MIVKpE2Vs2c0CUhpRSlGgVS7FoFkdAwMNau0TlDHV9lChoBmgJaA9DCHZSX5b233FAlIaUUpRoFUugaBZHQMDDZg9mpVF1fZQoaAZoCWgPQwj3yrxVV+hyQJSGlFKUaBVLy2gWR0DAw2k6gdwOdX2UKGgGaAloD0MIDvW7sLUqcECUhpRSlGgVS6FoFkdAwMNp37DVIHV9lChoBmgJaA9DCIKOVrVkxnFAlIaUUpRoFUu1aBZHQMDDcWbPQfJ1fZQoaAZoCWgPQwi9xi5RPZdzQJSGlFKUaBVLsmgWR0DAw30189fUdX2UKGgGaAloD0MI9n6jHfcbc0CUhpRSlGgVS7poFkdAwMN9jbzshXV9lChoBmgJaA9DCPS/XItWBHFAlIaUUpRoFUubaBZHQMDDg8aGYa51fZQoaAZoCWgPQwiuuaP/pXRyQJSGlFKUaBVLoGgWR0DAw4lbu+h5dX2UKGgGaAloD0MI4stEEZLmcECUhpRSlGgVS8FoFkdAwMOLuVopQXV9lChoBmgJaA9DCAnAP6UKknJAlIaUUpRoFUuwaBZHQMDDmGDDjzZ1fZQoaAZoCWgPQwgHQrKASf1yQJSGlFKUaBVLp2gWR0DAw5t6mfoSdX2UKGgGaAloD0MIIc1YNB0/dECUhpRSlGgVS9NoFkdAwMOjbgTAWXV9lChoBmgJaA9DCK4RwTi4KnFAlIaUUpRoFUuzaBZHQMDDsWGRFJB1fZQoaAZoCWgPQwiCHf8FAgtyQJSGlFKUaBVLuWgWR0DAw8Ckfs/qdX2UKGgGaAloD0MI626e6tC5ckCUhpRSlGgVS8JoFkdAwMPKBsANonV9lChoBmgJaA9DCAqfrYODMm9AlIaUUpRoFUuRaBZHQMDD0YR/ViF1fZQoaAZoCWgPQwhOt+wQP7pzQJSGlFKUaBVLrGgWR0DAw9R9oexOdX2UKGgGaAloD0MIBDkoYSa+b0CUhpRSlGgVS5poFkdAwMPXqwhW53V9lChoBmgJaA9DCIZzDTP0InNAlIaUUpRoFUvJaBZHQMDD2jx0+1V1fZQoaAZoCWgPQwipE9BEGOdxQJSGlFKUaBVLy2gWR0DAw98dmxt6dX2UKGgGaAloD0MIsFkuG52Mc0CUhpRSlGgVS9loFkdAwMPmkO7QLXV9lChoBmgJaA9DCA9EFmniX3JAlIaUUpRoFUuWaBZHQMDD9O9nK4h1fZQoaAZoCWgPQwhWSs/0kvpxQJSGlFKUaBVLxmgWR0DAw/kYyfthdX2UKGgGaAloD0MIQ1ciUD1Vc0CUhpRSlGgVS8RoFkdAwMP98CxNZnV9lChoBmgJaA9DCDT4+8XssXJAlIaUUpRoFUvJaBZHQMDEA58BuGd1fZQoaAZoCWgPQwgOvjCZKs5yQJSGlFKUaBVLrmgWR0DAxAtVghKUdX2UKGgGaAloD0MIkC3L16W+cECUhpRSlGgVS5xoFkdAwMQOYl6Z6XV9lChoBmgJaA9DCGpOXmSCsHJAlIaUUpRoFU2CAWgWR0DAxA8qx1PndX2UKGgGaAloD0MI5BOy87Z+b0CUhpRSlGgVS4toFkdAwMQTHww0wnV9lChoBmgJaA9DCLJGPUQj5nFAlIaUUpRoFUvQaBZHQMDEFB6By0d1fZQoaAZoCWgPQwjvWddoOfpMQJSGlFKUaBVLgGgWR0DAxCK8xsVMdX2UKGgGaAloD0MIx/SEJZ7VcUCUhpRSlGgVS5toFkdAwMQw5e7cwnV9lChoBmgJaA9DCL5O6stSrnJAlIaUUpRoFUuoaBZHQMDEMuuRs/J1fZQoaAZoCWgPQwjQX+gRI/lyQJSGlFKUaBVLtWgWR0DAxDNT3qRmdX2UKGgGaAloD0MIwy6KHvjQcUCUhpRSlGgVS6BoFkdAwMQ7JXhfjXV9lChoBmgJaA9DCLJLVG+NHHJAlIaUUpRoFUuYaBZHQMDEPeNcW0t1fZQoaAZoCWgPQwjkwKvlzjhyQJSGlFKUaBVLvWgWR0DAxEEnZ00WdX2UKGgGaAloD0MIYHKjyFqacECUhpRSlGgVS59oFkdAwMRSjesPrnV9lChoBmgJaA9DCESGVbwR0XFAlIaUUpRoFUuvaBZHQMDEV/5k9U11fZQoaAZoCWgPQwgtfH2ti4ZwQJSGlFKUaBVLp2gWR0DAxGjUI9kjdX2UKGgGaAloD0MIjZduEgM3dECUhpRSlGgVS7poFkdAwMRsX9itrHV9lChoBmgJaA9DCAh1kUJZeHFAlIaUUpRoFUusaBZHQMDEbzkhib51ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 1530,
80
+ "n_steps": 2048,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-Agneev/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f14263c5e340c0bf6e0af7b14cd2797b94b339a92d5815bfaa0b4c722055d420
3
+ size 87929
ppo-LunarLander-Agneev/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1dea8780e549d9c7ba7d308466dadd0214b5a3233e0ba48f37fb8a41259e985b
3
+ size 43393
ppo-LunarLander-Agneev/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-Agneev/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (183 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 297.4740510719372, "std_reward": 14.409726105670883, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-07T15:12:10.539345"}