Agog commited on
Commit
48268e4
1 Parent(s): 6110af1
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.72 +/- 0.19
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bcccf1578fcb3a1501900eb1e85ca6a5a1f76b27f1a4e8997c6c96396e3dbe9
3
+ size 67322
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f26a44685e0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f26a444dbd0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVlAAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKEtAS0BljA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
15
+ "net_arch": [
16
+ 64,
17
+ 64
18
+ ],
19
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
20
+ "optimizer_kwargs": {
21
+ "alpha": 0.99,
22
+ "eps": 1e-05,
23
+ "weight_decay": 0
24
+ }
25
+ },
26
+ "observation_space": {
27
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
28
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
29
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
30
+ "_shape": null,
31
+ "dtype": null,
32
+ "_np_random": null
33
+ },
34
+ "action_space": {
35
+ ":type:": "<class 'gym.spaces.box.Box'>",
36
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
37
+ "dtype": "float32",
38
+ "_shape": [
39
+ 3
40
+ ],
41
+ "low": "[-1. -1. -1.]",
42
+ "high": "[1. 1. 1.]",
43
+ "bounded_below": "[ True True True]",
44
+ "bounded_above": "[ True True True]",
45
+ "_np_random": null
46
+ },
47
+ "n_envs": 4,
48
+ "num_timesteps": 1000192,
49
+ "_total_timesteps": 1000000,
50
+ "_num_timesteps_at_start": 0,
51
+ "seed": null,
52
+ "action_noise": null,
53
+ "start_time": 1676581596252714511,
54
+ "learning_rate": 0.001,
55
+ "tensorboard_log": null,
56
+ "lr_schedule": {
57
+ ":type:": "<class 'function'>",
58
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
59
+ },
60
+ "_last_obs": {
61
+ ":type:": "<class 'collections.OrderedDict'>",
62
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAFqSGvxGBTT9SLIk+TbuDvyYJ0L5c7IY+/WKLvy29Vz4w708/maGFvrFCR737SM48lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAoW2rv3AI0D8KMU8/IR6kvyqstr5VFI0/5vqlvymnOD+uzLM/EtvSvCl5X73zwvc8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAWpIa/EYFNP1IsiT6UASM/QKFUP7ByMz5Nu4O/JgnQvlzshj6T0jI/15o4v+S+8z79You/Lb1XPjDvTz/gyAO/KD/+P8pSwb+ZoYW+sUJHvftIzjwoDgPAQSTHvwvvE7+UaA5LBEsGhpRoEnSUUpR1Lg==",
63
+ "achieved_goal": "[[-1.0518825 0.80275065 0.26791626]\n [-1.0291535 -0.4063198 0.26352203]\n [-1.0889584 0.21068259 0.81224346]\n [-0.26099852 -0.04864759 0.02518128]]",
64
+ "desired_goal": "[[-1.3392831 1.6252575 0.809342 ]\n [-1.2821695 -0.35678226 1.102183 ]\n [-1.2967193 0.72130066 1.4046838 ]\n [-0.02573923 -0.05455891 0.03024433]]",
65
+ "observation": "[[-1.0518825 0.80275065 0.26791626 0.63674283 0.8305855 0.17524219]\n [-1.0291535 -0.4063198 0.26352203 0.6985256 -0.72111267 0.47606575]\n [-1.0889584 0.21068259 0.81224346 -0.51478386 1.9863024 -1.510339 ]\n [-0.26099852 -0.04864759 0.02518128 -2.047739 -1.5557939 -0.57786626]]"
66
+ },
67
+ "_last_episode_starts": {
68
+ ":type:": "<class 'numpy.ndarray'>",
69
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
70
+ },
71
+ "_last_original_obs": {
72
+ ":type:": "<class 'collections.OrderedDict'>",
73
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7EYCPQ+xebxWHYI+PBCRPdo3mL2yIJY9GVzAPS+eqb3r6Hg+iXXFvWMuEj7G5Jc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
74
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
75
+ "desired_goal": "[[ 0.03180592 -0.01523997 0.25413007]\n [ 0.07083175 -0.07432528 0.07330455]\n [ 0.09392566 -0.08282124 0.24307601]\n [-0.09641559 0.14275508 0.29666728]]",
76
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
77
+ },
78
+ "_episode_num": 0,
79
+ "use_sde": true,
80
+ "sde_sample_freq": -1,
81
+ "_current_progress_remaining": -0.00019199999999996997,
82
+ "ep_info_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfv578Nql+7+UhpRSlIwBbJRLMowBdJRHQKa56JYT0xx1fZQoaAZoCWgPQwhApN++Dtz7v5SGlFKUaBVLMmgWR0Cmua340uUVdX2UKGgGaAloD0MI7+L9uP2SA8CUhpRSlGgVSzJoFkdAprlZAGB4EHV9lChoBmgJaA9DCNU/iGTIkQLAlIaUUpRoFUsyaBZHQKa5Gp++dsl1fZQoaAZoCWgPQwhLyXISSt/9v5SGlFKUaBVLMmgWR0Cmuyi9IwuedX2UKGgGaAloD0MIda4oJQSr/L+UhpRSlGgVSzJoFkdAprrt/8VHnXV9lChoBmgJaA9DCK+0jNR7ygDAlIaUUpRoFUsyaBZHQKa6mVhTfix1fZQoaAZoCWgPQwjT3XU25F/8v5SGlFKUaBVLMmgWR0CmulsAFPi2dX2UKGgGaAloD0MI6DOg3oza9L+UhpRSlGgVSzJoFkdAprx4AyVObnV9lChoBmgJaA9DCN+oFabvNfu/lIaUUpRoFUsyaBZHQKa8PWEK3NN1fZQoaAZoCWgPQwiy9QzhmIUCwJSGlFKUaBVLMmgWR0Cmu+h1cMVldX2UKGgGaAloD0MI2GZjJea5AcCUhpRSlGgVSzJoFkdAprup7VrhznV9lChoBmgJaA9DCEtcx7jiYv+/lIaUUpRoFUsyaBZHQKa9wznied11fZQoaAZoCWgPQwjVQPM5d3v3v5SGlFKUaBVLMmgWR0CmvYi++M6zdX2UKGgGaAloD0MI4xk09E9wAMCUhpRSlGgVSzJoFkdApr00LMLWqnV9lChoBmgJaA9DCCxn74y2Kv6/lIaUUpRoFUsyaBZHQKa89cbiqAB1fZQoaAZoCWgPQwhMb38uGvL2v5SGlFKUaBVLMmgWR0Cmvxjxsl9jdX2UKGgGaAloD0MIC2Kga18gAMCUhpRSlGgVSzJoFkdApr7eT9sJpnV9lChoBmgJaA9DCBDn4QSmk/+/lIaUUpRoFUsyaBZHQKa+iamXPZ91fZQoaAZoCWgPQwjAX8yWrIoBwJSGlFKUaBVLMmgWR0CmvkueSSvDdX2UKGgGaAloD0MIyjZwB+rU/7+UhpRSlGgVSzJoFkdApsCQYtQKr3V9lChoBmgJaA9DCGzQl97+3PW/lIaUUpRoFUsyaBZHQKbAVzjm0Vt1fZQoaAZoCWgPQwh1cobijvf8v5SGlFKUaBVLMmgWR0CmwAJU5uIidX2UKGgGaAloD0MI/I7hsZ/F/b+UhpRSlGgVSzJoFkdApr/EDMeOn3V9lChoBmgJaA9DCIkjD0QWaQHAlIaUUpRoFUsyaBZHQKbB08ujASF1fZQoaAZoCWgPQwj3lJwTe0gBwJSGlFKUaBVLMmgWR0CmwZjFQ2uQdX2UKGgGaAloD0MITu/i/bi99r+UhpRSlGgVSzJoFkdApsFEHY6GQHV9lChoBmgJaA9DCGghAaPL2wHAlIaUUpRoFUsyaBZHQKbBBSIgvDh1fZQoaAZoCWgPQwh0RL5LqWsBwJSGlFKUaBVLMmgWR0Cmwp2rXDm9dX2UKGgGaAloD0MIU3k7wmlhBMCUhpRSlGgVSzJoFkdApsJifzz3AXV9lChoBmgJaA9DCOmcn+I4cP2/lIaUUpRoFUsyaBZHQKbCDQMQVbl1fZQoaAZoCWgPQwgU0a+tnx4HwJSGlFKUaBVLMmgWR0Cmwc5hScbzdX2UKGgGaAloD0MIpItNK4UA+L+UhpRSlGgVSzJoFkdApsNgaP0ZnHV9lChoBmgJaA9DCPflzHaF/v+/lIaUUpRoFUsyaBZHQKbDJTEzfrN1fZQoaAZoCWgPQwi+v0F79XH/v5SGlFKUaBVLMmgWR0Cmws/G2kSFdX2UKGgGaAloD0MImgZF8wAW+b+UhpRSlGgVSzJoFkdApsKRGOMl1XV9lChoBmgJaA9DCAM/qmG/BwDAlIaUUpRoFUsyaBZHQKbEJa8Hv+h1fZQoaAZoCWgPQwghBU8hVwoCwJSGlFKUaBVLMmgWR0Cmw+p2ll9SdX2UKGgGaAloD0MIogp/hjdrBsCUhpRSlGgVSzJoFkdApsOU8ox59nV9lChoBmgJaA9DCFG7XwX4bv+/lIaUUpRoFUsyaBZHQKbDVeO4oZ11fZQoaAZoCWgPQwjshm2LMtv5v5SGlFKUaBVLMmgWR0CmxOr0jC53dX2UKGgGaAloD0MI1AyponjV/7+UhpRSlGgVSzJoFkdApsSwGpuMuXV9lChoBmgJaA9DCLjpz36kCPq/lIaUUpRoFUsyaBZHQKbEWtAcDKZ1fZQoaAZoCWgPQwjqQNZTq2/7v5SGlFKUaBVLMmgWR0CmxBv+n62wdX2UKGgGaAloD0MIf74tWKpL/L+UhpRSlGgVSzJoFkdApsW3Ls8gZHV9lChoBmgJaA9DCIPeG0MAUADAlIaUUpRoFUsyaBZHQKbFfAjY7JZ1fZQoaAZoCWgPQwjYuz/eqzYEwJSGlFKUaBVLMmgWR0CmxSaaLGaQdX2UKGgGaAloD0MIOsssQrFV/r+UhpRSlGgVSzJoFkdApsTn4Irvs3V9lChoBmgJaA9DCEm+EkiJnQDAlIaUUpRoFUsyaBZHQKbGf73PAwh1fZQoaAZoCWgPQwjQ04BB0ocEwJSGlFKUaBVLMmgWR0CmxkTCk43ndX2UKGgGaAloD0MIR3cQO1MIAMCUhpRSlGgVSzJoFkdApsXvSF49o3V9lChoBmgJaA9DCMvZO6OtSvm/lIaUUpRoFUsyaBZHQKbFsERJ2+x1fZQoaAZoCWgPQwjkgjP4+0X/v5SGlFKUaBVLMmgWR0Cmxz/qoqCpdX2UKGgGaAloD0MIKcsQx7p4/7+UhpRSlGgVSzJoFkdApscEqnWJ8HV9lChoBmgJaA9DCIp2FVJ+Ev2/lIaUUpRoFUsyaBZHQKbGry8zyjJ1fZQoaAZoCWgPQwg5s12hD9b7v5SGlFKUaBVLMmgWR0CmxnCUgSvldX2UKGgGaAloD0MIoDcVqTC2AsCUhpRSlGgVSzJoFkdApsgLkfcN6XV9lChoBmgJaA9DCNZXVwVqcf2/lIaUUpRoFUsyaBZHQKbH0HTqjah1fZQoaAZoCWgPQwhNh07Pu/H8v5SGlFKUaBVLMmgWR0Cmx3sfigkDdX2UKGgGaAloD0MIS3LAriYP+7+UhpRSlGgVSzJoFkdApsc8L8aXKXV9lChoBmgJaA9DCAA7N23GiQHAlIaUUpRoFUsyaBZHQKbI1M8HObB1fZQoaAZoCWgPQwiiREseTwv+v5SGlFKUaBVLMmgWR0CmyJm6GxlhdX2UKGgGaAloD0MIVG8NbJXg/r+UhpRSlGgVSzJoFkdApshEZ5zHTHV9lChoBmgJaA9DCG11OSUgBgDAlIaUUpRoFUsyaBZHQKbIBWK/Efl1fZQoaAZoCWgPQwi6FFeVfTcAwJSGlFKUaBVLMmgWR0CmyZvRzBAOdX2UKGgGaAloD0MIsBu2Lcrs/r+UhpRSlGgVSzJoFkdApslgouwos3V9lChoBmgJaA9DCCgrhqsDAAPAlIaUUpRoFUsyaBZHQKbJCyX2M851fZQoaAZoCWgPQwgwRiQKLav9v5SGlFKUaBVLMmgWR0CmyMwoLG70dX2UKGgGaAloD0MIRDLk2HoGAcCUhpRSlGgVSzJoFkdApsp1SydFv3V9lChoBmgJaA9DCH47iQj/Ivy/lIaUUpRoFUsyaBZHQKbKOuuieup1fZQoaAZoCWgPQwjrGi0HeigAwJSGlFKUaBVLMmgWR0CmyeWeQMhHdX2UKGgGaAloD0MI9wZfmEyVC8CUhpRSlGgVSzJoFkdApsmmp4rz5HV9lChoBmgJaA9DCCrkSj0LQve/lIaUUpRoFUsyaBZHQKbLR6hxo7F1fZQoaAZoCWgPQwg01ZP5R78BwJSGlFKUaBVLMmgWR0CmywyAH3UQdX2UKGgGaAloD0MIyqSGNgCb+L+UhpRSlGgVSzJoFkdApsq3ES/TLHV9lChoBmgJaA9DCGnk84qnnv+/lIaUUpRoFUsyaBZHQKbKeCQLeAN1fZQoaAZoCWgPQwhEFf4Mb5b8v5SGlFKUaBVLMmgWR0CmzBRQrMC+dX2UKGgGaAloD0MI2exI9Z3fAMCUhpRSlGgVSzJoFkdApsvZMcp9Z3V9lChoBmgJaA9DCATG+gYm9/2/lIaUUpRoFUsyaBZHQKbLg8AaNuN1fZQoaAZoCWgPQwjXprG9FjQCwJSGlFKUaBVLMmgWR0Cmy0VPepGXdX2UKGgGaAloD0MIijve5Lco/b+UhpRSlGgVSzJoFkdApszdJ17pmnV9lChoBmgJaA9DCD3xnC0gFADAlIaUUpRoFUsyaBZHQKbMoffXPJJ1fZQoaAZoCWgPQwj0a+un/yz+v5SGlFKUaBVLMmgWR0CmzEx28qWkdX2UKGgGaAloD0MIyNCxg0qcAsCUhpRSlGgVSzJoFkdApswNd7fHgnV9lChoBmgJaA9DCDElkuhlFPe/lIaUUpRoFUsyaBZHQKbNrmseXAx1fZQoaAZoCWgPQwgOLbKd78cAwJSGlFKUaBVLMmgWR0CmzXNcv/R3dX2UKGgGaAloD0MIrcPRVbq7/L+UhpRSlGgVSzJoFkdAps0d8qnWKHV9lChoBmgJaA9DCL4ViQlquPm/lIaUUpRoFUsyaBZHQKbM3yBClad1fZQoaAZoCWgPQwihhJm2f6UHwJSGlFKUaBVLMmgWR0CmzopZfUnYdX2UKGgGaAloD0MIZJY9CWwOAMCUhpRSlGgVSzJoFkdAps5PKhcqv3V9lChoBmgJaA9DCFEWvr7WJfm/lIaUUpRoFUsyaBZHQKbN+cJdB0J1fZQoaAZoCWgPQwgxsfm4NhT9v5SGlFKUaBVLMmgWR0CmzbrOZ9eAdX2UKGgGaAloD0MIJnFWRE0UBMCUhpRSlGgVSzJoFkdAps9akKu0TnV9lChoBmgJaA9DCLnF/NzQ1P+/lIaUUpRoFUsyaBZHQKbPH2q1gIB1fZQoaAZoCWgPQwifymlPyVkAwJSGlFKUaBVLMmgWR0CmzsoJZ4fPdX2UKGgGaAloD0MInN1aJsNx/L+UhpRSlGgVSzJoFkdAps6LBwdbPnV9lChoBmgJaA9DCKiKqfQTLgLAlIaUUpRoFUsyaBZHQKbQJe3QUpN1fZQoaAZoCWgPQwiiKqbST3gCwJSGlFKUaBVLMmgWR0Cmz+q3NLUTdX2UKGgGaAloD0MI/x8nTBgN/b+UhpRSlGgVSzJoFkdAps+VPtUn5XV9lChoBmgJaA9DCFAdq5SeKfm/lIaUUpRoFUsyaBZHQKbPVi/fwZx1ZS4="
85
+ },
86
+ "ep_success_buffer": {
87
+ ":type:": "<class 'collections.deque'>",
88
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
89
+ },
90
+ "_n_updates": 3907,
91
+ "n_steps": 64,
92
+ "gamma": 0.95,
93
+ "gae_lambda": 1.0,
94
+ "ent_coef": 0.0,
95
+ "vf_coef": 0.5,
96
+ "max_grad_norm": 0.5,
97
+ "normalize_advantage": true
98
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9ae7595c59e73103c4fc70a4861f9ab39a317beaadabbb335d3d667ece9ea74
3
+ size 24459
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c50298d968de161339cf0a1724fd4aeb73b9da6f6168911fee5b146db49e32a9
3
+ size 25483
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f26a44685e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f26a444dbd0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVlAAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKEtAS0BljA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "net_arch": [64, 64], "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000192, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676581596252714511, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAFqSGvxGBTT9SLIk+TbuDvyYJ0L5c7IY+/WKLvy29Vz4w708/maGFvrFCR737SM48lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAoW2rv3AI0D8KMU8/IR6kvyqstr5VFI0/5vqlvymnOD+uzLM/EtvSvCl5X73zwvc8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAWpIa/EYFNP1IsiT6UASM/QKFUP7ByMz5Nu4O/JgnQvlzshj6T0jI/15o4v+S+8z79You/Lb1XPjDvTz/gyAO/KD/+P8pSwb+ZoYW+sUJHvftIzjwoDgPAQSTHvwvvE7+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-1.0518825 0.80275065 0.26791626]\n [-1.0291535 -0.4063198 0.26352203]\n [-1.0889584 0.21068259 0.81224346]\n [-0.26099852 -0.04864759 0.02518128]]", "desired_goal": "[[-1.3392831 1.6252575 0.809342 ]\n [-1.2821695 -0.35678226 1.102183 ]\n [-1.2967193 0.72130066 1.4046838 ]\n [-0.02573923 -0.05455891 0.03024433]]", "observation": "[[-1.0518825 0.80275065 0.26791626 0.63674283 0.8305855 0.17524219]\n [-1.0291535 -0.4063198 0.26352203 0.6985256 -0.72111267 0.47606575]\n [-1.0889584 0.21068259 0.81224346 -0.51478386 1.9863024 -1.510339 ]\n [-0.26099852 -0.04864759 0.02518128 -2.047739 -1.5557939 -0.57786626]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7EYCPQ+xebxWHYI+PBCRPdo3mL2yIJY9GVzAPS+eqb3r6Hg+iXXFvWMuEj7G5Jc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03180592 -0.01523997 0.25413007]\n [ 0.07083175 -0.07432528 0.07330455]\n [ 0.09392566 -0.08282124 0.24307601]\n [-0.09641559 0.14275508 0.29666728]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": -0.00019199999999996997, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfv578Nql+7+UhpRSlIwBbJRLMowBdJRHQKa56JYT0xx1fZQoaAZoCWgPQwhApN++Dtz7v5SGlFKUaBVLMmgWR0Cmua340uUVdX2UKGgGaAloD0MI7+L9uP2SA8CUhpRSlGgVSzJoFkdAprlZAGB4EHV9lChoBmgJaA9DCNU/iGTIkQLAlIaUUpRoFUsyaBZHQKa5Gp++dsl1fZQoaAZoCWgPQwhLyXISSt/9v5SGlFKUaBVLMmgWR0Cmuyi9IwuedX2UKGgGaAloD0MIda4oJQSr/L+UhpRSlGgVSzJoFkdAprrt/8VHnXV9lChoBmgJaA9DCK+0jNR7ygDAlIaUUpRoFUsyaBZHQKa6mVhTfix1fZQoaAZoCWgPQwjT3XU25F/8v5SGlFKUaBVLMmgWR0CmulsAFPi2dX2UKGgGaAloD0MI6DOg3oza9L+UhpRSlGgVSzJoFkdAprx4AyVObnV9lChoBmgJaA9DCN+oFabvNfu/lIaUUpRoFUsyaBZHQKa8PWEK3NN1fZQoaAZoCWgPQwiy9QzhmIUCwJSGlFKUaBVLMmgWR0Cmu+h1cMVldX2UKGgGaAloD0MI2GZjJea5AcCUhpRSlGgVSzJoFkdAprup7VrhznV9lChoBmgJaA9DCEtcx7jiYv+/lIaUUpRoFUsyaBZHQKa9wznied11fZQoaAZoCWgPQwjVQPM5d3v3v5SGlFKUaBVLMmgWR0CmvYi++M6zdX2UKGgGaAloD0MI4xk09E9wAMCUhpRSlGgVSzJoFkdApr00LMLWqnV9lChoBmgJaA9DCCxn74y2Kv6/lIaUUpRoFUsyaBZHQKa89cbiqAB1fZQoaAZoCWgPQwhMb38uGvL2v5SGlFKUaBVLMmgWR0Cmvxjxsl9jdX2UKGgGaAloD0MIC2Kga18gAMCUhpRSlGgVSzJoFkdApr7eT9sJpnV9lChoBmgJaA9DCBDn4QSmk/+/lIaUUpRoFUsyaBZHQKa+iamXPZ91fZQoaAZoCWgPQwjAX8yWrIoBwJSGlFKUaBVLMmgWR0CmvkueSSvDdX2UKGgGaAloD0MIyjZwB+rU/7+UhpRSlGgVSzJoFkdApsCQYtQKr3V9lChoBmgJaA9DCGzQl97+3PW/lIaUUpRoFUsyaBZHQKbAVzjm0Vt1fZQoaAZoCWgPQwh1cobijvf8v5SGlFKUaBVLMmgWR0CmwAJU5uIidX2UKGgGaAloD0MI/I7hsZ/F/b+UhpRSlGgVSzJoFkdApr/EDMeOn3V9lChoBmgJaA9DCIkjD0QWaQHAlIaUUpRoFUsyaBZHQKbB08ujASF1fZQoaAZoCWgPQwj3lJwTe0gBwJSGlFKUaBVLMmgWR0CmwZjFQ2uQdX2UKGgGaAloD0MITu/i/bi99r+UhpRSlGgVSzJoFkdApsFEHY6GQHV9lChoBmgJaA9DCGghAaPL2wHAlIaUUpRoFUsyaBZHQKbBBSIgvDh1fZQoaAZoCWgPQwh0RL5LqWsBwJSGlFKUaBVLMmgWR0Cmwp2rXDm9dX2UKGgGaAloD0MIU3k7wmlhBMCUhpRSlGgVSzJoFkdApsJifzz3AXV9lChoBmgJaA9DCOmcn+I4cP2/lIaUUpRoFUsyaBZHQKbCDQMQVbl1fZQoaAZoCWgPQwgU0a+tnx4HwJSGlFKUaBVLMmgWR0Cmwc5hScbzdX2UKGgGaAloD0MIpItNK4UA+L+UhpRSlGgVSzJoFkdApsNgaP0ZnHV9lChoBmgJaA9DCPflzHaF/v+/lIaUUpRoFUsyaBZHQKbDJTEzfrN1fZQoaAZoCWgPQwi+v0F79XH/v5SGlFKUaBVLMmgWR0Cmws/G2kSFdX2UKGgGaAloD0MImgZF8wAW+b+UhpRSlGgVSzJoFkdApsKRGOMl1XV9lChoBmgJaA9DCAM/qmG/BwDAlIaUUpRoFUsyaBZHQKbEJa8Hv+h1fZQoaAZoCWgPQwghBU8hVwoCwJSGlFKUaBVLMmgWR0Cmw+p2ll9SdX2UKGgGaAloD0MIogp/hjdrBsCUhpRSlGgVSzJoFkdApsOU8ox59nV9lChoBmgJaA9DCFG7XwX4bv+/lIaUUpRoFUsyaBZHQKbDVeO4oZ11fZQoaAZoCWgPQwjshm2LMtv5v5SGlFKUaBVLMmgWR0CmxOr0jC53dX2UKGgGaAloD0MI1AyponjV/7+UhpRSlGgVSzJoFkdApsSwGpuMuXV9lChoBmgJaA9DCLjpz36kCPq/lIaUUpRoFUsyaBZHQKbEWtAcDKZ1fZQoaAZoCWgPQwjqQNZTq2/7v5SGlFKUaBVLMmgWR0CmxBv+n62wdX2UKGgGaAloD0MIf74tWKpL/L+UhpRSlGgVSzJoFkdApsW3Ls8gZHV9lChoBmgJaA9DCIPeG0MAUADAlIaUUpRoFUsyaBZHQKbFfAjY7JZ1fZQoaAZoCWgPQwjYuz/eqzYEwJSGlFKUaBVLMmgWR0CmxSaaLGaQdX2UKGgGaAloD0MIOsssQrFV/r+UhpRSlGgVSzJoFkdApsTn4Irvs3V9lChoBmgJaA9DCEm+EkiJnQDAlIaUUpRoFUsyaBZHQKbGf73PAwh1fZQoaAZoCWgPQwjQ04BB0ocEwJSGlFKUaBVLMmgWR0CmxkTCk43ndX2UKGgGaAloD0MIR3cQO1MIAMCUhpRSlGgVSzJoFkdApsXvSF49o3V9lChoBmgJaA9DCMvZO6OtSvm/lIaUUpRoFUsyaBZHQKbFsERJ2+x1fZQoaAZoCWgPQwjkgjP4+0X/v5SGlFKUaBVLMmgWR0Cmxz/qoqCpdX2UKGgGaAloD0MIKcsQx7p4/7+UhpRSlGgVSzJoFkdApscEqnWJ8HV9lChoBmgJaA9DCIp2FVJ+Ev2/lIaUUpRoFUsyaBZHQKbGry8zyjJ1fZQoaAZoCWgPQwg5s12hD9b7v5SGlFKUaBVLMmgWR0CmxnCUgSvldX2UKGgGaAloD0MIoDcVqTC2AsCUhpRSlGgVSzJoFkdApsgLkfcN6XV9lChoBmgJaA9DCNZXVwVqcf2/lIaUUpRoFUsyaBZHQKbH0HTqjah1fZQoaAZoCWgPQwhNh07Pu/H8v5SGlFKUaBVLMmgWR0Cmx3sfigkDdX2UKGgGaAloD0MIS3LAriYP+7+UhpRSlGgVSzJoFkdApsc8L8aXKXV9lChoBmgJaA9DCAA7N23GiQHAlIaUUpRoFUsyaBZHQKbI1M8HObB1fZQoaAZoCWgPQwiiREseTwv+v5SGlFKUaBVLMmgWR0CmyJm6GxlhdX2UKGgGaAloD0MIVG8NbJXg/r+UhpRSlGgVSzJoFkdApshEZ5zHTHV9lChoBmgJaA9DCG11OSUgBgDAlIaUUpRoFUsyaBZHQKbIBWK/Efl1fZQoaAZoCWgPQwi6FFeVfTcAwJSGlFKUaBVLMmgWR0CmyZvRzBAOdX2UKGgGaAloD0MIsBu2Lcrs/r+UhpRSlGgVSzJoFkdApslgouwos3V9lChoBmgJaA9DCCgrhqsDAAPAlIaUUpRoFUsyaBZHQKbJCyX2M851fZQoaAZoCWgPQwgwRiQKLav9v5SGlFKUaBVLMmgWR0CmyMwoLG70dX2UKGgGaAloD0MIRDLk2HoGAcCUhpRSlGgVSzJoFkdApsp1SydFv3V9lChoBmgJaA9DCH47iQj/Ivy/lIaUUpRoFUsyaBZHQKbKOuuieup1fZQoaAZoCWgPQwjrGi0HeigAwJSGlFKUaBVLMmgWR0CmyeWeQMhHdX2UKGgGaAloD0MI9wZfmEyVC8CUhpRSlGgVSzJoFkdApsmmp4rz5HV9lChoBmgJaA9DCCrkSj0LQve/lIaUUpRoFUsyaBZHQKbLR6hxo7F1fZQoaAZoCWgPQwg01ZP5R78BwJSGlFKUaBVLMmgWR0CmywyAH3UQdX2UKGgGaAloD0MIyqSGNgCb+L+UhpRSlGgVSzJoFkdApsq3ES/TLHV9lChoBmgJaA9DCGnk84qnnv+/lIaUUpRoFUsyaBZHQKbKeCQLeAN1fZQoaAZoCWgPQwhEFf4Mb5b8v5SGlFKUaBVLMmgWR0CmzBRQrMC+dX2UKGgGaAloD0MI2exI9Z3fAMCUhpRSlGgVSzJoFkdApsvZMcp9Z3V9lChoBmgJaA9DCATG+gYm9/2/lIaUUpRoFUsyaBZHQKbLg8AaNuN1fZQoaAZoCWgPQwjXprG9FjQCwJSGlFKUaBVLMmgWR0Cmy0VPepGXdX2UKGgGaAloD0MIijve5Lco/b+UhpRSlGgVSzJoFkdApszdJ17pmnV9lChoBmgJaA9DCD3xnC0gFADAlIaUUpRoFUsyaBZHQKbMoffXPJJ1fZQoaAZoCWgPQwj0a+un/yz+v5SGlFKUaBVLMmgWR0CmzEx28qWkdX2UKGgGaAloD0MIyNCxg0qcAsCUhpRSlGgVSzJoFkdApswNd7fHgnV9lChoBmgJaA9DCDElkuhlFPe/lIaUUpRoFUsyaBZHQKbNrmseXAx1fZQoaAZoCWgPQwgOLbKd78cAwJSGlFKUaBVLMmgWR0CmzXNcv/R3dX2UKGgGaAloD0MIrcPRVbq7/L+UhpRSlGgVSzJoFkdAps0d8qnWKHV9lChoBmgJaA9DCL4ViQlquPm/lIaUUpRoFUsyaBZHQKbM3yBClad1fZQoaAZoCWgPQwihhJm2f6UHwJSGlFKUaBVLMmgWR0CmzopZfUnYdX2UKGgGaAloD0MIZJY9CWwOAMCUhpRSlGgVSzJoFkdAps5PKhcqv3V9lChoBmgJaA9DCFEWvr7WJfm/lIaUUpRoFUsyaBZHQKbN+cJdB0J1fZQoaAZoCWgPQwgxsfm4NhT9v5SGlFKUaBVLMmgWR0CmzbrOZ9eAdX2UKGgGaAloD0MIJnFWRE0UBMCUhpRSlGgVSzJoFkdAps9akKu0TnV9lChoBmgJaA9DCLnF/NzQ1P+/lIaUUpRoFUsyaBZHQKbPH2q1gIB1fZQoaAZoCWgPQwifymlPyVkAwJSGlFKUaBVLMmgWR0CmzsoJZ4fPdX2UKGgGaAloD0MInN1aJsNx/L+UhpRSlGgVSzJoFkdAps6LBwdbPnV9lChoBmgJaA9DCKiKqfQTLgLAlIaUUpRoFUsyaBZHQKbQJe3QUpN1fZQoaAZoCWgPQwiiKqbST3gCwJSGlFKUaBVLMmgWR0Cmz+q3NLUTdX2UKGgGaAloD0MI/x8nTBgN/b+UhpRSlGgVSzJoFkdAps+VPtUn5XV9lChoBmgJaA9DCFAdq5SeKfm/lIaUUpRoFUsyaBZHQKbPVi/fwZx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3907, "n_steps": 64, "gamma": 0.95, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": true, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (831 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.7217930401675403, "std_reward": 0.1903688692075282, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-16T21:55:20.615160"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efcec555a1b559d28ab9dca0b6ccb17513fb5448f1af295cde00ad209fc1e38c
3
+ size 3056