AhiyaB commited on
Commit
f2201ab
1 Parent(s): c031a9d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - summarization
5
+ - generated_from_trainer
6
+ datasets:
7
+ - big_patent
8
+ metrics:
9
+ - rouge
10
+ model-index:
11
+ - name: mt5-small-finetuned-Big-Patent-h
12
+ results:
13
+ - task:
14
+ name: Sequence-to-sequence Language Modeling
15
+ type: text2text-generation
16
+ dataset:
17
+ name: big_patent
18
+ type: big_patent
19
+ config: h
20
+ split: train
21
+ args: h
22
+ metrics:
23
+ - name: Rouge1
24
+ type: rouge
25
+ value: 33.9091
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # mt5-small-finetuned-Big-Patent-h
32
+
33
+ This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the big_patent dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 2.2622
36
+ - Rouge1: 33.9091
37
+ - Rouge2: 14.1731
38
+ - Rougel: 30.105
39
+ - Rougelsum: 30.3666
40
+
41
+ ## Model description
42
+
43
+ More information needed
44
+
45
+ ## Intended uses & limitations
46
+
47
+ More information needed
48
+
49
+ ## Training and evaluation data
50
+
51
+ More information needed
52
+
53
+ ## Training procedure
54
+
55
+ ### Training hyperparameters
56
+
57
+ The following hyperparameters were used during training:
58
+ - learning_rate: 5.6e-05
59
+ - train_batch_size: 8
60
+ - eval_batch_size: 8
61
+ - seed: 42
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - num_epochs: 8
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
69
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
70
+ | 2.5817 | 1.0 | 1071 | 2.3830 | 32.8521 | 13.2087 | 29.5594 | 29.7744 |
71
+ | 2.5657 | 2.0 | 2142 | 2.3345 | 33.9434 | 14.0573 | 30.0135 | 30.2533 |
72
+ | 2.4915 | 3.0 | 3213 | 2.2761 | 33.2033 | 13.2053 | 29.5126 | 29.8023 |
73
+ | 2.4365 | 4.0 | 4284 | 2.3041 | 33.8649 | 13.6629 | 30.0377 | 30.257 |
74
+ | 2.3952 | 5.0 | 5355 | 2.2722 | 33.9208 | 13.8018 | 30.1035 | 30.3432 |
75
+ | 2.3628 | 6.0 | 6426 | 2.2850 | 33.883 | 13.9537 | 30.0579 | 30.2417 |
76
+ | 2.3474 | 7.0 | 7497 | 2.2858 | 33.7201 | 14.0808 | 30.0762 | 30.255 |
77
+ | 2.331 | 8.0 | 8568 | 2.2622 | 33.9091 | 14.1731 | 30.105 | 30.3666 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.24.0
83
+ - Pytorch 1.12.1+cu113
84
+ - Datasets 2.7.1
85
+ - Tokenizers 0.13.2