File size: 2,717 Bytes
7b76b31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: apache-2.0
base_model: t5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: pargraphs_titlesV1.0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pargraphs_titlesV1.0
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2697
- Rouge1: 68.705
- Rouge2: 54.5204
- Rougel: 67.7709
- Rougelsum: 67.7942
- Gen Len: 1401169535.5
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:------------:|
| 0.347 | 0.44 | 100 | 0.2634 | 65.1158 | 48.282 | 63.708 | 63.7424 | 1401169536.0 |
| 0.2412 | 0.88 | 200 | 0.3167 | 66.0958 | 50.4705 | 65.1041 | 65.1412 | 1401169536.0 |
| 0.2069 | 1.32 | 300 | 0.2357 | 68.6707 | 53.5945 | 67.3654 | 67.371 | 1401169536.0 |
| 0.1825 | 1.76 | 400 | 0.3932 | 65.7022 | 51.08 | 64.9927 | 65.0322 | 1401169536.0 |
| 0.1643 | 2.2 | 500 | 0.2223 | 69.132 | 54.5176 | 67.881 | 67.8987 | 1401169535.0 |
| 0.1715 | 2.64 | 600 | 0.2227 | 69.2258 | 54.2845 | 68.0181 | 68.0404 | 1401169535.5 |
| 0.1571 | 3.08 | 700 | 0.2707 | 68.9908 | 54.7777 | 68.1279 | 68.151 | 1401169536.0 |
| 0.1584 | 3.52 | 800 | 0.2193 | 70.9126 | 56.4866 | 69.6718 | 69.6687 | 1401169535.5 |
| 0.1565 | 3.96 | 900 | 0.3482 | 68.6691 | 54.8446 | 67.796 | 67.8541 | 1401169536.0 |
| 0.155 | 4.4 | 1000 | 0.2694 | 69.1457 | 55.1123 | 68.2207 | 68.2543 | 1401169536.0 |
| 0.1586 | 4.84 | 1100 | 0.2697 | 68.705 | 54.5204 | 67.7709 | 67.7942 | 1401169535.5 |
### Framework versions
- Transformers 4.36.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.15.0
|