Keras
nicholasKluge commited on
Commit
2301695
1 Parent(s): 17de898

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -0
README.md CHANGED
@@ -1,3 +1,59 @@
1
  ---
2
  license: apache-2.0
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ library_name: keras
4
  ---
5
+ # BiLSTM Sentiment Classifier (Teeny-Tiny Castle)
6
+
7
+ This model is part of a tutorial tied to the [Teeny-Tiny Castle](https://github.com/Nkluge-correa/TeenyTinyCastle), an open-source repository containing educational tools for AI Ethics and Safety research.
8
+
9
+ ## How to Use
10
+
11
+ ```python
12
+ from huggingface_hub import hf_hub_download
13
+
14
+ # Download the model
15
+ hf_hub_download(repo_id="AiresPucrs/BiLSTM-sentiment-classifier",
16
+                 filename="BiLSTM-sentiment-classifier.h5",
17
+                 local_dir="./",
18
+                 repo_type="model"
19
+ )
20
+
21
+ # Download the tokenizer file
22
+ hf_hub_download(repo_id="AiresPucrs/BiLSTM-sentiment-classifier",
23
+                 filename="tokenizer-BiLSTM-sentiment-classifier.json",
24
+                 local_dir="./",
25
+                 repo_type="model"
26
+ )
27
+
28
+ import json
29
+ import torch
30
+ import numpy as np
31
+ import pandas as pd
32
+ import tensorflow as tf
33
+
34
+ model = tf.keras.models.load_model('./BiLSTM-sentiment-classifier.h5')
35
+
36
+ with open('./tokenizer-BiLSTM-sentiment-classifier.json') as fp:
37
+ data = json.load(fp)
38
+ tokenizer = tf.keras.preprocessing.text.tokenizer_from_json(data)
39
+ fp.close()
40
+
41
+ strings = [
42
+     'this explanation is really bad',
43
+     'i did not like this tutorial 2/10',
44
+     'this tutorial is garbage i wont my money back',
45
+     'is nice to see philosophers doing machine learning',
46
+     'this is a great and wonderful example of nlp',
47
+     'this tutorial is great one of the best tutorials ever made'
48
+ ]
49
+
50
+ preds = model.predict(
51
+ tf.keras.preprocessing.sequence.pad_sequences(
52
+ tokenizer.texts_to_sequences(strings),
53
+         maxlen=250,
54
+         truncating='post'
55
+ ), verbose=0)
56
+
57
+ for i, string in enumerate(strings):
58
+     print(f'Review: "{string}"\n(Negative 😊 {round((preds[i][0]) * 100)}% | Positive 😔 {round(preds[i][1] * 100)}%)\n')
59
+ ```