File size: 2,409 Bytes
808cf5d
d163a6f
 
808cf5d
 
 
 
 
 
 
 
 
 
 
6f22c3e
808cf5d
0349568
82dbf68
808cf5d
 
6f22c3e
808cf5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f22c3e
808cf5d
 
18f1516
6f22c3e
 
808cf5d
6f22c3e
808cf5d
18f1516
6f22c3e
0349568
6f22c3e
0349568
6f22c3e
18f1516
6f22c3e
 
 
93a4bc2
ffa8dce
6f22c3e
93a4bc2
6f22c3e
93a4bc2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
language:
  - ja
tags:
- merge
- mergekit
- lazymergekit
- SakanaAI/EvoLLM-JP-A-v1-7B
- stabilityai/japanese-stablelm-base-gamma-7b
base_model:
- SakanaAI/EvoLLM-JP-A-v1-7B
- stabilityai/japanese-stablelm-base-gamma-7b
---

# 🌲 Hinoki-Sak-Sta-slerp-7B

Hinoki-Sak-Sta-slerp-7B is a merge of the following models using the [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing) of [Maxime Labonne](https://huggingface.co/mlabonne) powered by [MergeKit](https://github.com/arcee-ai/mergekit) of [Arcee AI](https://www.arcee.ai):
* [SakanaAI/EvoLLM-JP-A-v1-7B](https://huggingface.co/SakanaAI/EvoLLM-JP-A-v1-7B) (Base model)
* [stabilityai/japanese-stablelm-base-gamma-7b](https://huggingface.co/stabilityai/japanese-stablelm-base-gamma-7b)

## 💻 Configuration

```yaml
slices:
  - sources:
      - model: SakanaAI/EvoLLM-JP-A-v1-7B
        layer_range: [0, 32]
      - model: stabilityai/japanese-stablelm-base-gamma-7b
        layer_range: [0, 32]
merge_method: slerp
base_model: SakanaAI/EvoLLM-JP-A-v1-7B
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16
```

## 🤗 Usage for HuggingFace

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import pipeline
import torch

model_name = "AkimfromParis/Hinoki-Sak-Sta-slerp-7B"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)

pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, pad_token_id=tokenizer.eos_token_id)

messages = [
    {"role": "system","content": "あなたは誠実で優秀な日本人のアシスタントです。以下のトピックに関する詳細な情報を提供してください。"},
    {"role": "user", "content": "大谷翔平選手は誰ですか?"},
    ]
print(pipe(messages, max_new_tokens=512)[0]['generated_text'][-1])
```

# 🔖 Citation
```
@misc{goddard2024arcee,
  title={Arcee's MergeKit: A Toolkit for Merging Large Language Models},
  author={Goddard, Charles and Siriwardhana, Shamane and Ehghaghi, Malikeh and Meyers, Luke and Karpukhin, Vlad and Benedict, Brian and McQuade, Mark and Solawetz, Jacob},
  journal={arXiv preprint arXiv:2403.13257},
  year={2024}
}
```

arxiv.org/abs/2403.13257