File size: 4,089 Bytes
760b7cb cdfad7f 760b7cb cdfad7f 760b7cb cdfad7f 760b7cb 513aafc 760b7cb cdfad7f 760b7cb cdfad7f 760b7cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
---
license: apache-2.0
base_model: SpamAcc/ingredient_prune
tags:
- generated_from_trainer
model-index:
- name: ingredient_prune
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ingredient_prune
This model is a fine-tuned version of [SpamAcc/ingredient_prune](https://huggingface.co/SpamAcc/ingredient_prune) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0432
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.312 | 1.82 | 100 | 0.0295 |
| 0.0533 | 3.64 | 200 | 0.0149 |
| 0.0247 | 5.45 | 300 | 0.0136 |
| 0.0149 | 7.27 | 400 | 0.0124 |
| 0.0114 | 9.09 | 500 | 0.0127 |
| 0.0086 | 10.91 | 600 | 0.0127 |
| 0.0075 | 12.73 | 700 | 0.0145 |
| 0.0061 | 14.55 | 800 | 0.0151 |
| 0.0058 | 16.36 | 900 | 0.0161 |
| 0.0044 | 18.18 | 1000 | 0.0169 |
| 0.0039 | 20.0 | 1100 | 0.0199 |
| 0.0044 | 21.82 | 1200 | 0.0181 |
| 0.0035 | 23.64 | 1300 | 0.0230 |
| 0.0039 | 25.45 | 1400 | 0.0226 |
| 0.0028 | 27.27 | 1500 | 0.0234 |
| 0.0026 | 29.09 | 1600 | 0.0272 |
| 0.0023 | 30.91 | 1700 | 0.0261 |
| 0.0028 | 32.73 | 1800 | 0.0254 |
| 0.0018 | 34.55 | 1900 | 0.0268 |
| 0.0022 | 36.36 | 2000 | 0.0303 |
| 0.002 | 38.18 | 2100 | 0.0286 |
| 0.0018 | 40.0 | 2200 | 0.0299 |
| 0.0024 | 41.82 | 2300 | 0.0322 |
| 0.0019 | 43.64 | 2400 | 0.0328 |
| 0.0015 | 45.45 | 2500 | 0.0310 |
| 0.002 | 47.27 | 2600 | 0.0352 |
| 0.0015 | 49.09 | 2700 | 0.0361 |
| 0.0013 | 50.91 | 2800 | 0.0358 |
| 0.0011 | 52.73 | 2900 | 0.0368 |
| 0.0017 | 54.55 | 3000 | 0.0387 |
| 0.0012 | 56.36 | 3100 | 0.0384 |
| 0.0011 | 58.18 | 3200 | 0.0402 |
| 0.0016 | 60.0 | 3300 | 0.0394 |
| 0.0012 | 61.82 | 3400 | 0.0403 |
| 0.0013 | 63.64 | 3500 | 0.0392 |
| 0.0011 | 65.45 | 3600 | 0.0413 |
| 0.0015 | 67.27 | 3700 | 0.0400 |
| 0.0021 | 69.09 | 3800 | 0.0412 |
| 0.0009 | 70.91 | 3900 | 0.0410 |
| 0.0013 | 72.73 | 4000 | 0.0419 |
| 0.0009 | 74.55 | 4100 | 0.0415 |
| 0.0011 | 76.36 | 4200 | 0.0418 |
| 0.0008 | 78.18 | 4300 | 0.0422 |
| 0.0013 | 80.0 | 4400 | 0.0434 |
| 0.0011 | 81.82 | 4500 | 0.0436 |
| 0.0011 | 83.64 | 4600 | 0.0434 |
| 0.0008 | 85.45 | 4700 | 0.0434 |
| 0.0009 | 87.27 | 4800 | 0.0436 |
| 0.0006 | 89.09 | 4900 | 0.0442 |
| 0.0009 | 90.91 | 5000 | 0.0436 |
| 0.001 | 92.73 | 5100 | 0.0434 |
| 0.0008 | 94.55 | 5200 | 0.0433 |
| 0.0013 | 96.36 | 5300 | 0.0434 |
| 0.001 | 98.18 | 5400 | 0.0433 |
| 0.0008 | 100.0 | 5500 | 0.0432 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.2
|