File size: 2,644 Bytes
760b7cb
 
7aa8846
760b7cb
 
 
 
 
 
 
 
 
 
 
 
7aa8846
760b7cb
abe4b03
760b7cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
513aafc
 
760b7cb
 
 
513aafc
760b7cb
 
 
 
 
 
abe4b03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760b7cb
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: apache-2.0
base_model: google/flan-t5-base
tags:
- generated_from_trainer
model-index:
- name: ingredient_prune
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ingredient_prune

This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3196

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 40.04         | 0.18  | 10   | 30.2044         |
| 28.2106       | 0.36  | 20   | 22.6394         |
| 22.4239       | 0.55  | 30   | 16.8570         |
| 17.149        | 0.73  | 40   | 10.1178         |
| 11.379        | 0.91  | 50   | 5.1010          |
| 6.6773        | 1.09  | 60   | 4.7149          |
| 5.0559        | 1.27  | 70   | 4.4758          |
| 4.6474        | 1.45  | 80   | 4.2656          |
| 4.3934        | 1.64  | 90   | 3.9831          |
| 4.1421        | 1.82  | 100  | 3.6196          |
| 3.9066        | 2.0   | 110  | 3.0985          |
| 3.5465        | 2.18  | 120  | 2.4730          |
| 3.1722        | 2.36  | 130  | 1.8153          |
| 2.8787        | 2.55  | 140  | 1.5002          |
| 2.564         | 2.73  | 150  | 1.1748          |
| 2.296         | 2.91  | 160  | 0.9380          |
| 2.135         | 3.09  | 170  | 0.7860          |
| 1.9049        | 3.27  | 180  | 0.6740          |
| 1.7388        | 3.45  | 190  | 0.5633          |
| 1.5868        | 3.64  | 200  | 0.4853          |
| 1.5128        | 3.82  | 210  | 0.4449          |
| 1.3889        | 4.0   | 220  | 0.4066          |
| 1.3273        | 4.18  | 230  | 0.3800          |
| 1.2965        | 4.36  | 240  | 0.3589          |
| 1.1939        | 4.55  | 250  | 0.3389          |
| 1.2203        | 4.73  | 260  | 0.3254          |
| 1.1422        | 4.91  | 270  | 0.3196          |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.2