File size: 7,008 Bytes
760b7cb
 
24ef7ed
760b7cb
 
24ef7ed
 
760b7cb
 
 
 
 
 
 
 
 
 
24ef7ed
760b7cb
24ef7ed
 
 
 
 
 
760b7cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24ef7ed
 
760b7cb
 
 
24ef7ed
760b7cb
 
 
 
24ef7ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760b7cb
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
---
license: apache-2.0
base_model: t5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: ingredient_prune
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ingredient_prune

This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0255
- Rouge1: 88.3061
- Rouge2: 76.6099
- Rougel: 88.3242
- Rougelsum: 88.2429
- Gen Len: 10.5872

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 2.9499        | 0.09  | 10   | 1.3100          | 33.1645 | 23.9561 | 32.6647 | 32.7137   | 14.7431 |
| 1.9454        | 0.18  | 20   | 0.6787          | 30.1119 | 21.203  | 29.5079 | 29.6061   | 13.8349 |
| 1.309         | 0.28  | 30   | 0.5147          | 25.3399 | 17.694  | 24.4102 | 24.4425   | 11.6514 |
| 1.0307        | 0.37  | 40   | 0.4398          | 17.4522 | 11.66   | 16.2846 | 16.3817   | 8.5413  |
| 0.9574        | 0.46  | 50   | 0.4302          | 16.6745 | 10.6799 | 15.8568 | 16.4301   | 8.0092  |
| 0.7183        | 0.55  | 60   | 0.3818          | 14.4343 | 9.4646  | 13.9825 | 14.1979   | 6.9725  |
| 0.5636        | 0.64  | 70   | 0.3096          | 9.4156  | 5.2844  | 9.0143  | 9.239     | 5.5596  |
| 0.4603        | 0.73  | 80   | 0.2664          | 8.6106  | 4.7574  | 7.9285  | 8.4429    | 5.0917  |
| 0.4607        | 0.83  | 90   | 0.2319          | 6.7868  | 3.9309  | 6.1844  | 6.7007    | 3.8349  |
| 0.352         | 0.92  | 100  | 0.1991          | 6.2965  | 3.5572  | 5.3616  | 5.9941    | 3.2661  |
| 0.3426        | 1.01  | 110  | 0.1735          | 6.1795  | 3.1174  | 5.3783  | 5.9261    | 3.3119  |
| 0.2901        | 1.1   | 120  | 0.1553          | 5.5031  | 2.739   | 4.9926  | 5.5079    | 3.1376  |
| 0.3619        | 1.19  | 130  | 0.1452          | 4.1403  | 1.8462  | 4.0877  | 4.1877    | 3.0092  |
| 0.2509        | 1.28  | 140  | 0.1338          | 4.1399  | 1.8019  | 3.9836  | 4.1506    | 2.9541  |
| 0.1938        | 1.38  | 150  | 0.1187          | 2.9515  | 1.2174  | 2.7845  | 3.0192    | 2.2569  |
| 0.1987        | 1.47  | 160  | 0.1068          | 4.8991  | 3.4459  | 4.7552  | 4.9489    | 2.1284  |
| 0.1702        | 1.56  | 170  | 0.0983          | 8.7082  | 5.5788  | 8.5531  | 8.8267    | 3.4587  |
| 0.1535        | 1.65  | 180  | 0.0871          | 11.5572 | 7.6669  | 11.4688 | 11.5381   | 4.6972  |
| 0.1629        | 1.74  | 190  | 0.0771          | 16.33   | 11.587  | 16.0842 | 16.1965   | 6.6055  |
| 0.1618        | 1.83  | 200  | 0.0690          | 21.4186 | 14.9296 | 21.2789 | 21.2002   | 8.367   |
| 0.1617        | 1.93  | 210  | 0.0628          | 27.6198 | 19.8907 | 27.4479 | 27.4515   | 10.3394 |
| 0.1136        | 2.02  | 220  | 0.0572          | 36.7416 | 28.2903 | 36.7181 | 36.719    | 12.3578 |
| 0.1278        | 2.11  | 230  | 0.0526          | 46.9007 | 36.6481 | 47.1002 | 46.8623   | 13.7064 |
| 0.0915        | 2.2   | 240  | 0.0486          | 56.1238 | 45.5624 | 56.3372 | 56.0369   | 14.1101 |
| 0.0736        | 2.29  | 250  | 0.0448          | 63.3857 | 51.8889 | 63.6163 | 63.2685   | 13.4771 |
| 0.0855        | 2.39  | 260  | 0.0420          | 72.669  | 59.9359 | 72.7393 | 72.6055   | 12.3486 |
| 0.0921        | 2.48  | 270  | 0.0388          | 78.2224 | 65.2581 | 78.2789 | 77.9532   | 11.3578 |
| 0.077         | 2.57  | 280  | 0.0364          | 82.3881 | 68.397  | 82.4999 | 82.3175   | 10.5872 |
| 0.0848        | 2.66  | 290  | 0.0347          | 85.4014 | 72.793  | 85.495  | 85.3917   | 10.633  |
| 0.0978        | 2.75  | 300  | 0.0332          | 86.0947 | 72.9678 | 86.1325 | 86.0028   | 10.5138 |
| 0.0635        | 2.84  | 310  | 0.0323          | 86.158  | 73.833  | 86.2727 | 86.1471   | 10.5596 |
| 0.0555        | 2.94  | 320  | 0.0314          | 86.0306 | 73.8297 | 86.0421 | 85.9571   | 10.5688 |
| 0.0792        | 3.03  | 330  | 0.0305          | 87.5066 | 75.3885 | 87.6496 | 87.3874   | 10.3761 |
| 0.0536        | 3.12  | 340  | 0.0297          | 88.0844 | 75.8754 | 88.1956 | 87.9164   | 10.4954 |
| 0.063         | 3.21  | 350  | 0.0290          | 88.0844 | 75.8754 | 88.1956 | 87.9164   | 10.4954 |
| 0.0563        | 3.3   | 360  | 0.0283          | 88.0783 | 75.989  | 88.2233 | 87.9578   | 10.5138 |
| 0.0547        | 3.39  | 370  | 0.0279          | 88.1265 | 76.3196 | 88.3078 | 88.0765   | 10.6147 |
| 0.0635        | 3.49  | 380  | 0.0275          | 86.9846 | 74.8237 | 87.0556 | 86.9021   | 10.5872 |
| 0.0835        | 3.58  | 390  | 0.0271          | 86.933  | 75.3277 | 87.0357 | 86.931    | 10.6147 |
| 0.0628        | 3.67  | 400  | 0.0269          | 87.5981 | 75.5811 | 87.6905 | 87.4594   | 10.6789 |
| 0.0554        | 3.76  | 410  | 0.0267          | 88.0124 | 76.5633 | 88.174  | 87.9292   | 10.578  |
| 0.0342        | 3.85  | 420  | 0.0266          | 88.0124 | 76.5633 | 88.174  | 87.9292   | 10.578  |
| 0.0396        | 3.94  | 430  | 0.0263          | 88.0064 | 76.6947 | 88.1712 | 87.9434   | 10.5872 |
| 0.045         | 4.04  | 440  | 0.0262          | 87.7466 | 76.3605 | 87.8932 | 87.6273   | 10.5505 |
| 0.0566        | 4.13  | 450  | 0.0262          | 87.8577 | 76.5633 | 88.0399 | 87.7835   | 10.6055 |
| 0.0582        | 4.22  | 460  | 0.0261          | 87.8103 | 76.1351 | 87.9277 | 87.7032   | 10.6697 |
| 0.051         | 4.31  | 470  | 0.0260          | 87.8103 | 76.1351 | 87.9277 | 87.7032   | 10.6697 |
| 0.0398        | 4.4   | 480  | 0.0258          | 88.1974 | 76.4006 | 88.2158 | 88.0622   | 10.6789 |
| 0.0364        | 4.5   | 490  | 0.0257          | 88.3353 | 76.5513 | 88.3291 | 88.2557   | 10.633  |
| 0.0498        | 4.59  | 500  | 0.0257          | 88.4083 | 76.5513 | 88.4132 | 88.35     | 10.6147 |
| 0.0406        | 4.68  | 510  | 0.0256          | 88.3061 | 76.6099 | 88.3242 | 88.2429   | 10.5872 |
| 0.0403        | 4.77  | 520  | 0.0256          | 88.3061 | 76.6099 | 88.3242 | 88.2429   | 10.5872 |
| 0.0421        | 4.86  | 530  | 0.0255          | 88.3061 | 76.6099 | 88.3242 | 88.2429   | 10.5872 |
| 0.0271        | 4.95  | 540  | 0.0255          | 88.3061 | 76.6099 | 88.3242 | 88.2429   | 10.5872 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.2