--- library_name: transformers license: apache-2.0 base_model: facebook/dinov2-base tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 model-index: - name: dinov2-base-finetuned-eye results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.968 - name: F1 type: f1 value: 0.9678344915175675 --- # dinov2-base-finetuned-eye This model is a fine-tuned version of [facebook/dinov2-base](https://huggingface.co/facebook/dinov2-base) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2262 - Accuracy: 0.968 - F1: 0.9678 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.3853 | 1.0 | 250 | 0.4918 | 0.874 | 0.8729 | | 0.5345 | 2.0 | 500 | 0.4390 | 0.878 | 0.8771 | | 0.4693 | 3.0 | 750 | 0.3857 | 0.88 | 0.8796 | | 0.1933 | 4.0 | 1000 | 0.3444 | 0.894 | 0.8948 | | 0.3146 | 5.0 | 1250 | 0.2456 | 0.936 | 0.9362 | | 0.1832 | 6.0 | 1500 | 0.3369 | 0.924 | 0.9229 | | 0.1407 | 7.0 | 1750 | 0.3425 | 0.946 | 0.9454 | | 0.1462 | 8.0 | 2000 | 0.2864 | 0.948 | 0.9476 | | 0.0905 | 9.0 | 2250 | 0.2177 | 0.956 | 0.9560 | | 0.0859 | 10.0 | 2500 | 0.2262 | 0.968 | 0.9678 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0