|
import inspect |
|
from typing import List, Optional, Tuple, Union, Callable |
|
|
|
import torch |
|
from torch.nn import functional as F |
|
from transformers import CLIPTextModelWithProjection, CLIPTokenizer |
|
from transformers.models.clip.modeling_clip import CLIPTextModelOutput |
|
|
|
from diffusers import ( |
|
DiffusionPipeline, |
|
ImagePipelineOutput, |
|
PriorTransformer, |
|
UnCLIPScheduler, |
|
UNet2DConditionModel, |
|
UNet2DModel, |
|
) |
|
from diffusers.pipelines.unclip import UnCLIPTextProjModel |
|
from diffusers.utils import is_accelerate_available, logging |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def slerp(val, low, high): |
|
""" |
|
Find the interpolation point between the 'low' and 'high' values for the given 'val'. See https://en.wikipedia.org/wiki/Slerp for more details on the topic. |
|
""" |
|
low_norm = low / torch.norm(low) |
|
high_norm = high / torch.norm(high) |
|
omega = torch.acos((low_norm * high_norm)) |
|
so = torch.sin(omega) |
|
res = (torch.sin((1.0 - val) * omega) / so) * low + (torch.sin(val * omega) / so) * high |
|
return res |
|
|
|
|
|
class UnCLIPTextInterpolationPipeline(DiffusionPipeline): |
|
|
|
""" |
|
Pipeline for prompt-to-prompt interpolation on CLIP text embeddings and using the UnCLIP / Dall-E to decode them to images. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Args: |
|
text_encoder ([`CLIPTextModelWithProjection`]): |
|
Frozen text-encoder. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
prior ([`PriorTransformer`]): |
|
The canonincal unCLIP prior to approximate the image embedding from the text embedding. |
|
text_proj ([`UnCLIPTextProjModel`]): |
|
Utility class to prepare and combine the embeddings before they are passed to the decoder. |
|
decoder ([`UNet2DConditionModel`]): |
|
The decoder to invert the image embedding into an image. |
|
super_res_first ([`UNet2DModel`]): |
|
Super resolution unet. Used in all but the last step of the super resolution diffusion process. |
|
super_res_last ([`UNet2DModel`]): |
|
Super resolution unet. Used in the last step of the super resolution diffusion process. |
|
prior_scheduler ([`UnCLIPScheduler`]): |
|
Scheduler used in the prior denoising process. Just a modified DDPMScheduler. |
|
decoder_scheduler ([`UnCLIPScheduler`]): |
|
Scheduler used in the decoder denoising process. Just a modified DDPMScheduler. |
|
super_res_scheduler ([`UnCLIPScheduler`]): |
|
Scheduler used in the super resolution denoising process. Just a modified DDPMScheduler. |
|
|
|
""" |
|
|
|
prior: PriorTransformer |
|
decoder: UNet2DConditionModel |
|
text_proj: UnCLIPTextProjModel |
|
text_encoder: CLIPTextModelWithProjection |
|
tokenizer: CLIPTokenizer |
|
super_res_first: UNet2DModel |
|
super_res_last: UNet2DModel |
|
|
|
prior_scheduler: UnCLIPScheduler |
|
decoder_scheduler: UnCLIPScheduler |
|
super_res_scheduler: UnCLIPScheduler |
|
|
|
|
|
def __init__( |
|
self, |
|
prior: PriorTransformer, |
|
decoder: UNet2DConditionModel, |
|
text_encoder: CLIPTextModelWithProjection, |
|
tokenizer: CLIPTokenizer, |
|
text_proj: UnCLIPTextProjModel, |
|
super_res_first: UNet2DModel, |
|
super_res_last: UNet2DModel, |
|
prior_scheduler: UnCLIPScheduler, |
|
decoder_scheduler: UnCLIPScheduler, |
|
super_res_scheduler: UnCLIPScheduler, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
prior=prior, |
|
decoder=decoder, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
text_proj=text_proj, |
|
super_res_first=super_res_first, |
|
super_res_last=super_res_last, |
|
prior_scheduler=prior_scheduler, |
|
decoder_scheduler=decoder_scheduler, |
|
super_res_scheduler=super_res_scheduler, |
|
) |
|
|
|
|
|
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): |
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
if latents.shape != shape: |
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") |
|
latents = latents.to(device) |
|
|
|
latents = latents * scheduler.init_noise_sigma |
|
return latents |
|
|
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None, |
|
text_attention_mask: Optional[torch.Tensor] = None, |
|
): |
|
if text_model_output is None: |
|
batch_size = len(prompt) if isinstance(prompt, list) else 1 |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
text_mask = text_inputs.attention_mask.bool().to(device) |
|
|
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] |
|
|
|
text_encoder_output = self.text_encoder(text_input_ids.to(device)) |
|
|
|
prompt_embeds = text_encoder_output.text_embeds |
|
text_encoder_hidden_states = text_encoder_output.last_hidden_state |
|
|
|
else: |
|
batch_size = text_model_output[0].shape[0] |
|
prompt_embeds, text_encoder_hidden_states = text_model_output[0], text_model_output[1] |
|
text_mask = text_attention_mask |
|
|
|
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) |
|
text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
if do_classifier_free_guidance: |
|
uncond_tokens = [""] * batch_size |
|
|
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
uncond_text_mask = uncond_input.attention_mask.bool().to(device) |
|
negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device)) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds |
|
uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state |
|
|
|
|
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) |
|
|
|
seq_len = uncond_text_encoder_hidden_states.shape[1] |
|
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) |
|
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( |
|
batch_size * num_images_per_prompt, seq_len, -1 |
|
) |
|
uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) |
|
|
|
text_mask = torch.cat([uncond_text_mask, text_mask]) |
|
|
|
return prompt_embeds, text_encoder_hidden_states, text_mask |
|
|
|
|
|
def enable_sequential_cpu_offload(self, gpu_id=0): |
|
r""" |
|
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's |
|
models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only |
|
when their specific submodule has its `forward` method called. |
|
""" |
|
if is_accelerate_available(): |
|
from accelerate import cpu_offload |
|
else: |
|
raise ImportError("Please install accelerate via `pip install accelerate`") |
|
|
|
device = torch.device(f"cuda:{gpu_id}") |
|
|
|
|
|
models = [ |
|
self.decoder, |
|
self.text_proj, |
|
self.text_encoder, |
|
self.super_res_first, |
|
self.super_res_last, |
|
] |
|
for cpu_offloaded_model in models: |
|
if cpu_offloaded_model is not None: |
|
cpu_offload(cpu_offloaded_model, device) |
|
|
|
@property |
|
|
|
def _execution_device(self): |
|
r""" |
|
Returns the device on which the pipeline's models will be executed. After calling |
|
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module |
|
hooks. |
|
""" |
|
if self.device != torch.device("meta") or not hasattr(self.decoder, "_hf_hook"): |
|
return self.device |
|
for module in self.decoder.modules(): |
|
if ( |
|
hasattr(module, "_hf_hook") |
|
and hasattr(module._hf_hook, "execution_device") |
|
and module._hf_hook.execution_device is not None |
|
): |
|
return torch.device(module._hf_hook.execution_device) |
|
return self.device |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
start_prompt: str, |
|
end_prompt: str, |
|
steps: int = 5, |
|
prior_num_inference_steps: int = 25, |
|
decoder_num_inference_steps: int = 25, |
|
super_res_num_inference_steps: int = 7, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
prior_guidance_scale: float = 4.0, |
|
decoder_guidance_scale: float = 8.0, |
|
enable_sequential_cpu_offload=True, |
|
gpu_id=0, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
): |
|
""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
start_prompt (`str`): |
|
The prompt to start the image generation interpolation from. |
|
end_prompt (`str`): |
|
The prompt to end the image generation interpolation at. |
|
steps (`int`, *optional*, defaults to 5): |
|
The number of steps over which to interpolate from start_prompt to end_prompt. The pipeline returns |
|
the same number of images as this value. |
|
prior_num_inference_steps (`int`, *optional*, defaults to 25): |
|
The number of denoising steps for the prior. More denoising steps usually lead to a higher quality |
|
image at the expense of slower inference. |
|
decoder_num_inference_steps (`int`, *optional*, defaults to 25): |
|
The number of denoising steps for the decoder. More denoising steps usually lead to a higher quality |
|
image at the expense of slower inference. |
|
super_res_num_inference_steps (`int`, *optional*, defaults to 7): |
|
The number of denoising steps for super resolution. More denoising steps usually lead to a higher |
|
quality image at the expense of slower inference. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
prior_guidance_scale (`float`, *optional*, defaults to 4.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
decoder_guidance_scale (`float`, *optional*, defaults to 4.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
enable_sequential_cpu_offload (`bool`, *optional*, defaults to `True`): |
|
If True, offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's |
|
models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only |
|
when their specific submodule has its `forward` method called. |
|
gpu_id (`int`, *optional*, defaults to `0`): |
|
The gpu_id to be passed to enable_sequential_cpu_offload. Only works when enable_sequential_cpu_offload is set to True. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
""" |
|
|
|
if not isinstance(start_prompt, str) or not isinstance(end_prompt, str): |
|
raise ValueError( |
|
f"`start_prompt` and `end_prompt` should be of type `str` but got {type(start_prompt)} and" |
|
f" {type(end_prompt)} instead" |
|
) |
|
|
|
if enable_sequential_cpu_offload: |
|
self.enable_sequential_cpu_offload(gpu_id=gpu_id) |
|
|
|
device = self._execution_device |
|
|
|
|
|
inputs = self.tokenizer( |
|
[start_prompt, end_prompt], |
|
padding="max_length", |
|
truncation=True, |
|
max_length=self.tokenizer.model_max_length, |
|
return_tensors="pt", |
|
) |
|
inputs.to(device) |
|
text_model_output = self.text_encoder(**inputs) |
|
|
|
text_attention_mask = torch.max(inputs.attention_mask[0], inputs.attention_mask[1]) |
|
text_attention_mask = torch.cat([text_attention_mask.unsqueeze(0)] * steps).to(device) |
|
|
|
|
|
batch_text_embeds = [] |
|
batch_last_hidden_state = [] |
|
|
|
for interp_val in torch.linspace(0, 1, steps): |
|
text_embeds = slerp(interp_val, text_model_output.text_embeds[0], text_model_output.text_embeds[1]) |
|
last_hidden_state = slerp( |
|
interp_val, text_model_output.last_hidden_state[0], text_model_output.last_hidden_state[1] |
|
) |
|
batch_text_embeds.append(text_embeds.unsqueeze(0)) |
|
batch_last_hidden_state.append(last_hidden_state.unsqueeze(0)) |
|
|
|
batch_text_embeds = torch.cat(batch_text_embeds) |
|
batch_last_hidden_state = torch.cat(batch_last_hidden_state) |
|
|
|
text_model_output = CLIPTextModelOutput( |
|
text_embeds=batch_text_embeds, last_hidden_state=batch_last_hidden_state |
|
) |
|
|
|
batch_size = text_model_output[0].shape[0] |
|
|
|
do_classifier_free_guidance = prior_guidance_scale > 1.0 or decoder_guidance_scale > 1.0 |
|
|
|
prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt( |
|
prompt=None, |
|
device=device, |
|
num_images_per_prompt=1, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
text_model_output=text_model_output, |
|
text_attention_mask=text_attention_mask, |
|
) |
|
|
|
|
|
current_step = 0 |
|
self.prior_scheduler.set_timesteps(prior_num_inference_steps, device=device) |
|
prior_timesteps_tensor = self.prior_scheduler.timesteps |
|
|
|
embedding_dim = self.prior.config.embedding_dim |
|
|
|
prior_latents = self.prepare_latents( |
|
(batch_size, embedding_dim), |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
None, |
|
self.prior_scheduler, |
|
) |
|
|
|
for i, t in enumerate(self.progress_bar(prior_timesteps_tensor)): |
|
|
|
latent_model_input = torch.cat([prior_latents] * 2) if do_classifier_free_guidance else prior_latents |
|
|
|
predicted_image_embedding = self.prior( |
|
latent_model_input, |
|
timestep=t, |
|
proj_embedding=prompt_embeds, |
|
encoder_hidden_states=text_encoder_hidden_states, |
|
attention_mask=text_mask, |
|
).predicted_image_embedding |
|
|
|
if do_classifier_free_guidance: |
|
predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2) |
|
predicted_image_embedding = predicted_image_embedding_uncond + prior_guidance_scale * ( |
|
predicted_image_embedding_text - predicted_image_embedding_uncond |
|
) |
|
|
|
if i + 1 == prior_timesteps_tensor.shape[0]: |
|
prev_timestep = None |
|
else: |
|
prev_timestep = prior_timesteps_tensor[i + 1] |
|
|
|
prior_latents = self.prior_scheduler.step( |
|
predicted_image_embedding, |
|
timestep=t, |
|
sample=prior_latents, |
|
generator=generator, |
|
prev_timestep=prev_timestep, |
|
).prev_sample |
|
|
|
current_step += 1 |
|
if callback is not None and current_step % callback_steps == 0: |
|
callback(current_step, t, prior_latents) |
|
|
|
prior_latents = self.prior.post_process_latents(prior_latents) |
|
|
|
image_embeddings = prior_latents |
|
|
|
|
|
|
|
|
|
|
|
text_encoder_hidden_states, additive_clip_time_embeddings = self.text_proj( |
|
image_embeddings=image_embeddings, |
|
prompt_embeds=prompt_embeds, |
|
text_encoder_hidden_states=text_encoder_hidden_states, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
) |
|
|
|
if device.type == "mps": |
|
|
|
|
|
text_mask = text_mask.type(torch.int) |
|
decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=1) |
|
decoder_text_mask = decoder_text_mask.type(torch.bool) |
|
else: |
|
decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=True) |
|
|
|
self.decoder_scheduler.set_timesteps(decoder_num_inference_steps, device=device) |
|
decoder_timesteps_tensor = self.decoder_scheduler.timesteps |
|
|
|
num_channels_latents = self.decoder.in_channels |
|
height = self.decoder.sample_size |
|
width = self.decoder.sample_size |
|
|
|
decoder_latents = self.prepare_latents( |
|
(batch_size, num_channels_latents, height, width), |
|
text_encoder_hidden_states.dtype, |
|
device, |
|
generator, |
|
None, |
|
self.decoder_scheduler, |
|
) |
|
|
|
for i, t in enumerate(self.progress_bar(decoder_timesteps_tensor)): |
|
|
|
latent_model_input = torch.cat([decoder_latents] * 2) if do_classifier_free_guidance else decoder_latents |
|
|
|
noise_pred = self.decoder( |
|
sample=latent_model_input, |
|
timestep=t, |
|
encoder_hidden_states=text_encoder_hidden_states, |
|
class_labels=additive_clip_time_embeddings, |
|
attention_mask=decoder_text_mask, |
|
).sample |
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred_uncond, _ = noise_pred_uncond.split(latent_model_input.shape[1], dim=1) |
|
noise_pred_text, predicted_variance = noise_pred_text.split(latent_model_input.shape[1], dim=1) |
|
noise_pred = noise_pred_uncond + decoder_guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
noise_pred = torch.cat([noise_pred, predicted_variance], dim=1) |
|
|
|
if i + 1 == decoder_timesteps_tensor.shape[0]: |
|
prev_timestep = None |
|
else: |
|
prev_timestep = decoder_timesteps_tensor[i + 1] |
|
|
|
|
|
decoder_latents = self.decoder_scheduler.step( |
|
noise_pred, t, decoder_latents, prev_timestep=prev_timestep, generator=generator |
|
).prev_sample |
|
|
|
|
|
current_step += 1 |
|
if callback is not None and current_step % callback_steps == 0: |
|
callback(current_step, t, decoder_latents) |
|
|
|
decoder_latents = decoder_latents.clamp(-1, 1) |
|
|
|
image_small = decoder_latents |
|
|
|
|
|
|
|
|
|
|
|
self.super_res_scheduler.set_timesteps(super_res_num_inference_steps, device=device) |
|
super_res_timesteps_tensor = self.super_res_scheduler.timesteps |
|
|
|
channels = self.super_res_first.in_channels // 2 |
|
height = self.super_res_first.sample_size |
|
width = self.super_res_first.sample_size |
|
|
|
super_res_latents = self.prepare_latents( |
|
(batch_size, channels, height, width), |
|
image_small.dtype, |
|
device, |
|
generator, |
|
None, |
|
self.super_res_scheduler, |
|
) |
|
|
|
if device.type == "mps": |
|
|
|
image_upscaled = F.interpolate(image_small, size=[height, width]) |
|
else: |
|
interpolate_antialias = {} |
|
if "antialias" in inspect.signature(F.interpolate).parameters: |
|
interpolate_antialias["antialias"] = True |
|
|
|
image_upscaled = F.interpolate( |
|
image_small, size=[height, width], mode="bicubic", align_corners=False, **interpolate_antialias |
|
) |
|
|
|
for i, t in enumerate(self.progress_bar(super_res_timesteps_tensor)): |
|
|
|
|
|
if i == super_res_timesteps_tensor.shape[0] - 1: |
|
unet = self.super_res_last |
|
else: |
|
unet = self.super_res_first |
|
|
|
latent_model_input = torch.cat([super_res_latents, image_upscaled], dim=1) |
|
|
|
noise_pred = unet( |
|
sample=latent_model_input, |
|
timestep=t, |
|
).sample |
|
|
|
if i + 1 == super_res_timesteps_tensor.shape[0]: |
|
prev_timestep = None |
|
else: |
|
prev_timestep = super_res_timesteps_tensor[i + 1] |
|
|
|
|
|
super_res_latents = self.super_res_scheduler.step( |
|
noise_pred, t, super_res_latents, prev_timestep=prev_timestep, generator=generator |
|
).prev_sample |
|
|
|
|
|
current_step += 1 |
|
if callback is not None and current_step % callback_steps == 0: |
|
callback(current_step, t, super_res_latents) |
|
|
|
image = super_res_latents |
|
|
|
|
|
|
|
|
|
image = image * 0.5 + 0.5 |
|
image = image.clamp(0, 1) |
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
|
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |
|
|